Unicom-ViT-B-32 / README.md
jmzzomg's picture
unicom-vit-b-32 model card
9f48f41 verified
|
raw
history blame
801 Bytes
---
license: apache-2.0
pipeline_tag: image-feature-extraction
---
ONNX port of [Unicom](https://arxiv.org/abs/2304.05884) model from [open-metric-learning](https://github.com/OML-Team/open-metric-learning).
This model is intended to be used for similarity search.
### Usage
Here's an example of performing inference using the model with [FastEmbed](https://github.com/qdrant/fastembed).
```py
from fastembed import ImageEmbedding
images = [
"./path/to/image1.jpg",
"./path/to/image2.jpg",
]
model = ImageEmbedding(model_name="Qdrant/Unicom-ViT-B-32")
embeddings = list(model.embed(images))
# [
# array([ 0.04177791, 0.0550059 , 0.00025418, 0.0252876 , ..., dtype=float32),
# array([2.23932182e-03, 4.68995124e-02, 3.28772422e-03, 7.57176951e-02, ...], dtype=float32)
# ]
```