|
--- |
|
license: apache-2.0 |
|
--- |
|
# RP3D-DiagModel |
|
|
|
|
|
|
|
## About Checkpoint |
|
|
|
The detailed parameter we use for training is in the following: |
|
|
|
``` |
|
start_class: 0 |
|
end_clas: 5569 |
|
backbone: 'resnet' |
|
level: 'articles' # represents the disorder level |
|
depth: 32 |
|
ltype: 'MultiLabel' # represents the Binary Cross Entropy Loss |
|
augment: True # represents the medical data augmentation |
|
split: 'late' # represents the late fusion strategy |
|
``` |
|
|
|
### Load Model |
|
|
|
``` |
|
# Load backnone |
|
model = RadNet(num_cls=num_classes, backbone=backbone, depth=depth, ltype=ltype, augment=augment, fuse=fuse, ke=ke, encoded=encoded, adapter=adapter) |
|
pretrained_weights = torch.load("path/to/pytorch_model_32_late.bin") |
|
missing, unexpect = model.load_state_dict(pretrained_weights,strict=False) |
|
print("missing_cpt:", missing) |
|
print("unexpect_cpt:", unexpect) |
|
|
|
# If KE is set True, load text encoder |
|
medcpt = MedCPT_clinical(bert_model_name = 'ncbi/MedCPT-Query-Encoder') |
|
checkpoint = torch.load('path/to/epoch_state.pt',map_location='cpu')['state_dict'] |
|
load_checkpoint = {key.replace('module.', ''): value for key, value in checkpoint.items()} |
|
missing, unexpect = medcpt.load_state_dict(load_checkpoint, strict=False) |
|
print("missing_cpt:", missing) |
|
print("unexpect_cpt:", unexpect) |
|
``` |
|
|
|
## Why we provide this checkpoint? |
|
|
|
All the early fusion checkpoint can be further finetuned from this checkpoint. If you need other checkpoints using different parameter settings, there are two possible ways: |
|
|
|
### Finetune from this checkpoint |
|
|
|
''' |
|
checkpoint: "None" |
|
safetensor: path to this checkpoint(pytorch_model.bin) |
|
''' |
|
|
|
### Contact Us |
|
|
|
Email the author: [email protected] |
|
|
|
## About Dataset |
|
|
|
Please refer to [RP3D-DiagDS](https://huggingface.co/datasets/QiaoyuZheng/RP3D-DiagDS) |
|
|
|
For more information, please refer to our instructions on [github](https://github.com/qiaoyu-zheng/RP3D-Diag) to download and use. |