tags:
- Multilingual
license: mit
pipeline_tag: text-generation
base_model: LLaMAX/LLaMAX3-8B-Alpaca
QuantFactory/LLaMAX3-8B-Alpaca-GGUF
This is quantized version of LLaMAX/LLaMAX3-8B-Alpaca created using llama.cpp
Model Description
Model Sources
- Paper: LLaMAX: Scaling Linguistic Horizons of LLM by Enhancing Translation Capabilities Beyond 100 Languages
- Link: https://arxiv.org/pdf/2407.05975
- Repository: https://github.com/CONE-MT/LLaMAX/
Model Description
LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities.
We collected extensive training sets in 102 languages for continued pre-training of Llama2 and leveraged the English instruction fine-tuning dataset, Alpaca, to fine-tune its instruction-following capabilities.
🔥 Effortless Multilingual Translation with a Simple Prompt
LLaMAX supports translation between more than 100 languages, surpassing the performance of similarly scaled LLMs.
def Prompt_template(query, src_language, trg_language):
instruction = f'Translate the following sentences from {src_language} to {trg_language}.'
prompt = (
'Below is an instruction that describes a task, paired with an input that provides further context. '
'Write a response that appropriately completes the request.\n'
f'### Instruction:\n{instruction}\n'
f'### Input:\n{query}\n### Response:'
)
return prompt
And then run the following codes to execute translation:
from transformers import AutoTokenizer, LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
query = "你好,今天是个好日子"
prompt = Prompt_template(query, 'Chinese', 'English')
inputs = tokenizer(prompt, return_tensors="pt")
generate_ids = model.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# => "Hello, today is a good day"
🔥 Excellent Translation Performance
LLaMAX3-8B-Alpaca achieves an average spBLEU score improvement of over 5 points compared to the LLaMA3-8B-Alpaca model on the Flores-101 dataset.
System | Size | en-X (COMET) | en-X (BLEU) | zh-X (COMET) | zh-X (BLEU) | de-X (COMET) | de-X (BLEU) | ne-X (COMET) | ne-X (BLEU) | ar-X (COMET) | ar-X (BLEU) | az-X (COMET) | az-X (BLEU) | ceb-X (COMET) | ceb-X (BLEU) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LLaMA3-8B-Alpaca | 8B | 67.97 | 17.23 | 64.65 | 10.14 | 64.67 | 13.62 | 62.95 | 7.96 | 63.45 | 11.27 | 60.61 | 6.98 | 55.26 | 8.52 |
LLaMAX3-8B-Alpaca | 8B | 75.52 | 22.77 | 73.16 | 14.43 | 73.47 | 18.95 | 75.13 | 15.32 | 72.29 | 16.42 | 72.06 | 12.41 | 68.88 | 15.85 |
System | Size | X-en (COMET) | X-en (BLEU) | X-zh (COMET) | X-zh (BLEU) | X-de (COMET) | X-de (BLEU) | X-ne (COMET) | X-ne (BLEU) | X-ar (COMET) | X-ar (BLEU) | X-az (COMET) | X-az (BLEU) | X-ceb (COMET) | X-ceb (BLEU) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LLaMA3-8B-Alpaca | 8B | 77.43 | 26.55 | 73.56 | 13.17 | 71.59 | 16.82 | 46.56 | 3.83 | 66.49 | 10.20 | 58.30 | 4.81 | 52.68 | 4.18 |
LLaMAX3-8B-Alpaca | 8B | 81.28 | 31.85 | 78.34 | 16.46 | 76.23 | 20.64 | 65.83 | 14.16 | 75.84 | 15.45 | 70.61 | 9.32 | 63.35 | 12.66 |
Supported Languages
Akrikaans (af), Amharic (am), Arabic (ar), Armenian (hy), Assamese (as), Asturian (ast), Azerbaijani (az), Belarusian (be), Bengali (bn), Bosnian (bs), Bulgarian (bg), Burmese (my), Catalan (ca), Cebuano (ceb), Chinese Simpl (zho), Chinese Trad (zho), Croatian (hr), Czech (cs), Danish (da), Dutch (nl), English (en), Estonian (et), Filipino (tl), Finnish (fi), French (fr), Fulah (ff), Galician (gl), Ganda (lg), Georgian (ka), German (de), Greek (el), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Hungarian (hu), Icelandic (is), Igbo (ig), Indonesian (id), Irish (ga), Italian (it), Japanese (ja), Javanese (jv), Kabuverdianu (kea), Kamba (kam), Kannada (kn), Kazakh (kk), Khmer (km), Korean (ko), Kyrgyz (ky), Lao (lo), Latvian (lv), Lingala (ln), Lithuanian (lt), Luo (luo), Luxembourgish (lb), Macedonian (mk), Malay (ms), Malayalam (ml), Maltese (mt), Maori (mi), Marathi (mr), Mongolian (mn), Nepali (ne), Northern Sotho (ns), Norwegian (no), Nyanja (ny), Occitan (oc), Oriya (or), Oromo (om), Pashto (ps), Persian (fa), Polish (pl), Portuguese (pt), Punjabi (pa), Romanian (ro), Russian (ru), Serbian (sr), Shona (sn), Sindhi (sd), Slovak (sk), Slovenian (sl), Somali (so), Sorani Kurdish (ku), Spanish (es), Swahili (sw), Swedish (sv), Tajik (tg), Tamil (ta), Telugu (te), Thai (th), Turkish (tr), Ukrainian (uk), Umbundu (umb), Urdu (ur), Uzbek (uz), Vietnamese (vi), Welsh (cy), Wolof (wo), Xhosa (xh), Yoruba (yo), Zulu (zu)
Model Index
We implement multiple versions of the LLaMAX model, the model links are as follows:
Model Citation
If our model helps your work, please cite this paper:
@misc{lu2024llamaxscalinglinguistichorizons,
title={LLaMAX: Scaling Linguistic Horizons of LLM by Enhancing Translation Capabilities Beyond 100 Languages},
author={Yinquan Lu and Wenhao Zhu and Lei Li and Yu Qiao and Fei Yuan},
year={2024},
eprint={2407.05975},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.05975},
}