QuantFactory/Llama-3-8B-Magpie-Pro-SFT-200K-v0.1-GGUF
This is quantized version of Magpie-Align/Llama-3-8B-Magpie-Pro-SFT-200K-v0.1 created using llama.cpp
Model Description
Project Web: https://magpie-align.github.io/
Arxiv Technical Report: https://arxiv.org/abs/2406.08464
Codes: https://github.com/magpie-align/magpie
About This Model
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on First 200K data of Magpie-Align/Magpie-Pro-300K-Filtered dataset.
Please use Magpie-Align/Llama-3-8B-Magpie-Pro-SFT-v0.1 with better performance.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8686 | 0.0018 | 1 | 0.8670 |
0.514 | 0.3342 | 184 | 0.5190 |
0.4769 | 0.6685 | 368 | 0.4684 |
0.4394 | 1.0027 | 552 | 0.4440 |
0.3399 | 1.3224 | 736 | 0.4436 |
0.3394 | 1.6567 | 920 | 0.4413 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Magpie-Align/Magpie-Pro-300K-Filtered-First200K
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./out_Llama-3-8B-Magpie-Pro-200K-FilteredL
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for QuantFactory/Llama-3-8B-Magpie-Pro-SFT-200K-v0.1-GGUF
Base model
meta-llama/Meta-Llama-3-8B