Meta-Llama-3-225B-Instruct
- This is quantized version of mlabonne/Meta-Llama-3-225B-Instruct created using llama.cpp
Meta-Llama-3-225B-Instruct is a self-merge with meta-llama/Meta-Llama-3-70B-Instruct.
It was inspired by large merges like:
- alpindale/goliath-120b
- nsfwthrowitaway69/Venus-120b-v1.0
- cognitivecomputations/MegaDolphin-120b
- wolfram/miquliz-120b-v2.0.
I don't recommend using it as it seems to break quite easily (but feel free to prove me wrong).
𧩠Configuration
slices:
- sources:
- layer_range: [0, 20]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [10, 30]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [20, 40]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [30, 50]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [40, 60]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [50, 70]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [60, 80]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [70, 90]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [80, 100]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [90, 110]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [100, 120]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [110, 130]
model: mlabonne/Meta-Llama-3-120B-Instruct
- sources:
- layer_range: [120, 140]
model: mlabonne/Meta-Llama-3-120B-Instruct
merge_method: passthrough
dtype: float16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Meta-Llama-3-220B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 3
Model tree for QuantFactory/Meta-Llama-3-225B-Instruct-GGUF
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct
Finetuned
mlabonne/Meta-Llama-3-120B-Instruct
Finetuned
mlabonne/Meta-Llama-3-225B-Instruct