Update README.md
#10
by
AngelVenerov
- opened
README.md
CHANGED
@@ -32,7 +32,7 @@ Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (
|
|
32 |
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
|
33 |
- Number of Parameters: 32.5B
|
34 |
- Number of Paramaters (Non-Embedding): 31.0B
|
35 |
-
- Number of Layers:
|
36 |
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
|
37 |
- Context Length: Full 131,072 tokens
|
38 |
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
|
@@ -78,7 +78,7 @@ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
|
78 |
|
79 |
generated_ids = model.generate(
|
80 |
**model_inputs,
|
81 |
-
max_new_tokens=
|
82 |
)
|
83 |
generated_ids = [
|
84 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
|
32 |
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
|
33 |
- Number of Parameters: 32.5B
|
34 |
- Number of Paramaters (Non-Embedding): 31.0B
|
35 |
+
- Number of Layers: 512
|
36 |
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
|
37 |
- Context Length: Full 131,072 tokens
|
38 |
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
|
|
|
78 |
|
79 |
generated_ids = model.generate(
|
80 |
**model_inputs,
|
81 |
+
max_new_tokens=2048
|
82 |
)
|
83 |
generated_ids = [
|
84 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|