Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -32,7 +32,7 @@ Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (
32
  - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
33
  - Number of Parameters: 32.5B
34
  - Number of Paramaters (Non-Embedding): 31.0B
35
- - Number of Layers: 64
36
  - Number of Attention Heads (GQA): 40 for Q and 8 for KV
37
  - Context Length: Full 131,072 tokens
38
  - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
@@ -78,7 +78,7 @@ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
78
 
79
  generated_ids = model.generate(
80
  **model_inputs,
81
- max_new_tokens=512
82
  )
83
  generated_ids = [
84
  output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 
32
  - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
33
  - Number of Parameters: 32.5B
34
  - Number of Paramaters (Non-Embedding): 31.0B
35
+ - Number of Layers: 512
36
  - Number of Attention Heads (GQA): 40 for Q and 8 for KV
37
  - Context Length: Full 131,072 tokens
38
  - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
 
78
 
79
  generated_ids = model.generate(
80
  **model_inputs,
81
+ max_new_tokens=2048
82
  )
83
  generated_ids = [
84
  output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)