RASMUS's picture
Update README.md
3187ece
|
raw
history blame
2.64 kB
---
language:
- fi
lisence: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- fi
- speech
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R 1B Wav2Vec2 Finnish by Rasmus Toivanen
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: fi
metrics:
- name: Test WER
type: wer
value: 10.96
- name: Test CER
type: cer
value: 2.81
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-fi-train-aug-lm-1B
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1499
- Wer: 0.1955
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6473 | 0.29 | 400 | 0.2857 | 0.3825 |
| 0.6039 | 0.58 | 800 | 0.2459 | 0.3476 |
| 0.4757 | 0.87 | 1200 | 0.2338 | 0.3274 |
| 0.4473 | 1.15 | 1600 | 0.2246 | 0.3128 |
| 0.4322 | 1.44 | 2000 | 0.1962 | 0.2805 |
| 0.3961 | 1.73 | 2400 | 0.2070 | 0.2797 |
| 0.3642 | 2.02 | 2800 | 0.1790 | 0.2473 |
| 0.3561 | 2.31 | 3200 | 0.1769 | 0.2375 |
| 0.282 | 2.6 | 3600 | 0.1672 | 0.2263 |
| 0.2978 | 2.89 | 4000 | 0.1636 | 0.2192 |
| 0.2722 | 3.17 | 4400 | 0.1637 | 0.2102 |
| 0.2924 | 3.46 | 4800 | 0.1506 | 0.2021 |
| 0.2631 | 3.75 | 5200 | 0.1499 | 0.1955 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0