Update README.md
#3
by
philschmid
HF staff
- opened
README.md
CHANGED
@@ -97,6 +97,84 @@ print(helpsteer_rewards_pred)
|
|
97 |
# [2.78125 2.859375 3.484375 1.3847656 1.296875 ]
|
98 |
```
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
## Citation
|
101 |
|
102 |
If you find this work useful for your research, please consider citing:
|
|
|
97 |
# [2.78125 2.859375 3.484375 1.3847656 1.296875 ]
|
98 |
```
|
99 |
|
100 |
+
## Easy to use Pipeline
|
101 |
+
|
102 |
+
```python
|
103 |
+
from typing import Dict, List
|
104 |
+
import torch
|
105 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
106 |
+
|
107 |
+
|
108 |
+
class ArmoRMPipeline:
|
109 |
+
def __init__(self, model_id, device_map="auto", torch_dtype=torch.bfloat16, truncation=True, trust_remote_code=False, max_length=4096):
|
110 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
111 |
+
model_id,
|
112 |
+
device_map=device_map,
|
113 |
+
trust_remote_code=trust_remote_code,
|
114 |
+
torch_dtype=torch_dtype,
|
115 |
+
)
|
116 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
117 |
+
model_id,
|
118 |
+
use_fast=True,
|
119 |
+
)
|
120 |
+
self.truncation = truncation
|
121 |
+
self.device = self.model.device
|
122 |
+
self.max_length = max_length
|
123 |
+
|
124 |
+
def __call__(self, messages: List[Dict[str, str]]) -> Dict[str, float]:
|
125 |
+
"""
|
126 |
+
messages: OpenAI chat messages to be scored
|
127 |
+
Note: no batching since due to length differences, the model will have to pad to the max length which is not efficient
|
128 |
+
Returns: a dictionary with the score between 0 and 1
|
129 |
+
"""
|
130 |
+
input_ids = self.tokenizer.apply_chat_template(
|
131 |
+
messages,
|
132 |
+
return_tensors="pt",
|
133 |
+
padding=True,
|
134 |
+
truncation=self.truncation,
|
135 |
+
max_length=self.max_length,
|
136 |
+
).to(self.device)
|
137 |
+
with torch.no_grad():
|
138 |
+
output = self.model(input_ids)
|
139 |
+
score = output.score.float().item()
|
140 |
+
return {"score": score}
|
141 |
+
|
142 |
+
# Create Reward Model Pipeline
|
143 |
+
prompt = 'What are some synonyms for the word "beautiful"?'
|
144 |
+
rm = ArmoRMPipeline("RLHFlow/ArmoRM-Llama3-8B-v0.1", trust_remote_code=True)
|
145 |
+
# score the messages
|
146 |
+
response1 = 'Nicely, Beautifully, Handsome, Stunning, Wonderful, Gorgeous, Pretty, Stunning, Elegant'
|
147 |
+
score1 = rm([{"role": "user", "content": prompt}, {"role": "assistant", "content": response1}])
|
148 |
+
print(score1)
|
149 |
+
|
150 |
+
response2 = '''Certainly! Here are some synonyms for the word "beautiful":
|
151 |
+
|
152 |
+
1. Gorgeous
|
153 |
+
2. Lovely
|
154 |
+
3. Stunning
|
155 |
+
4. Attractive
|
156 |
+
5. Pretty
|
157 |
+
6. Elegant
|
158 |
+
7. Exquisite
|
159 |
+
8. Handsome
|
160 |
+
9. Charming
|
161 |
+
10. Alluring
|
162 |
+
11. Radiant
|
163 |
+
12. Magnificent
|
164 |
+
13. Graceful
|
165 |
+
14. Enchanting
|
166 |
+
15. Dazzling
|
167 |
+
|
168 |
+
These synonyms can be used in various contexts to convey the idea of beauty.'''
|
169 |
+
score2 = rm([{"role": "user", "content": prompt}, {"role": "assistant", "content": response2}])
|
170 |
+
print(score2)
|
171 |
+
|
172 |
+
response3 = 'Sorry i cannot answer this.'
|
173 |
+
score3 = rm([{"role": "user", "content": prompt}, {"role": "assistant", "content": response3}])
|
174 |
+
print(score3)
|
175 |
+
|
176 |
+
```
|
177 |
+
|
178 |
## Citation
|
179 |
|
180 |
If you find this work useful for your research, please consider citing:
|