RMWeerasinghe's picture
Update README.md
bca055c verified
metadata
license: apache-2.0
base_model: RMWeerasinghe/long-t5-tglobal-base-finetuned-govReport-4096
tags:
  - summarization
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: long-t5-tglobal-base-boardpapers-4096
    results: []
pipeline_tag: summarization

long-t5-tglobal-base-boardpapers-4096

This model is a fine-tuned version of RMWeerasinghe/long-t5-tglobal-base-finetuned-govReport-4096 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5356
  • Rouge1: 0.0844
  • Rouge2: 0.0543
  • Rougel: 0.0716
  • Rougelsum: 0.0842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 0.67 1 0.6583 0.0647 0.03 0.0504 0.0595
No log 2.0 3 0.6232 0.067 0.036 0.0527 0.0643
No log 2.67 4 0.6134 0.067 0.036 0.0527 0.0643
No log 4.0 6 0.5971 0.0742 0.0426 0.0654 0.0735
No log 4.67 7 0.5897 0.0765 0.0462 0.0654 0.0762
No log 6.0 9 0.5777 0.0803 0.0486 0.0665 0.0802
No log 6.67 10 0.5729 0.0813 0.0498 0.0677 0.0801
No log 8.0 12 0.5652 0.0813 0.0498 0.0677 0.0801
No log 8.67 13 0.5622 0.0823 0.0544 0.0685 0.0811
No log 10.0 15 0.5575 0.0823 0.0544 0.0685 0.0811
No log 10.67 16 0.5559 0.0823 0.0544 0.0685 0.0811
No log 12.0 18 0.5528 0.0823 0.0544 0.0685 0.0811
No log 12.67 19 0.5513 0.0823 0.0544 0.0685 0.0811
0.7235 14.0 21 0.5488 0.0823 0.0544 0.0685 0.0811
0.7235 14.67 22 0.5476 0.0811 0.0544 0.0674 0.0794
0.7235 16.0 24 0.5451 0.086 0.0574 0.074 0.0841
0.7235 16.67 25 0.5438 0.086 0.0574 0.074 0.0841
0.7235 18.0 27 0.5420 0.086 0.0574 0.074 0.0841
0.7235 18.67 28 0.5412 0.086 0.0574 0.074 0.0841
0.7235 20.0 30 0.5397 0.086 0.0574 0.074 0.0841
0.7235 20.67 31 0.5390 0.086 0.0574 0.074 0.0841
0.7235 22.0 33 0.5377 0.0844 0.0543 0.0716 0.0842
0.7235 22.67 34 0.5372 0.0844 0.0543 0.0716 0.0842
0.7235 24.0 36 0.5363 0.0844 0.0543 0.0716 0.0842
0.7235 24.67 37 0.5360 0.0844 0.0543 0.0716 0.0842
0.7235 26.0 39 0.5357 0.0844 0.0543 0.0716 0.0842
0.6478 26.67 40 0.5356 0.0844 0.0543 0.0716 0.0842

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.17.0
  • Tokenizers 0.15.1