RMWeerasinghe's picture
Update README.md
f4e2b3a verified
metadata
license: apache-2.0
base_model: google-t5/t5-small
tags:
  - summarization
  - generated_from_trainer
datasets:
  - govreport-summarization
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-govReport-3072
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: govreport-summarization
          type: govreport-summarization
          config: document
          split: validation
          args: document
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.0371
pipeline_tag: summarization

t5-small-finetuned-govReport-3072

This model is a fine-tuned version of google-t5/t5-small on the govreport-summarization dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8367
  • Rouge1: 0.0371
  • Rouge2: 0.0142
  • Rougel: 0.0316
  • Rougelsum: 0.0352

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
19.9287 0.99 31 11.5775 0.0331 0.0151 0.0293 0.0317
12.489 1.98 62 9.1322 0.0373 0.0162 0.0322 0.0351
10.8693 2.98 93 7.8834 0.0367 0.0153 0.0327 0.0348
9.1603 4.0 125 6.8580 0.0374 0.0162 0.0322 0.0355
8.2587 4.99 156 5.7038 0.0382 0.0154 0.0326 0.0366
6.6869 5.98 187 4.8553 0.0388 0.0159 0.0341 0.037
5.8997 6.98 218 4.3049 0.0383 0.0145 0.0336 0.036
5.0285 8.0 250 3.9143 0.0369 0.0138 0.0311 0.035
4.5944 8.99 281 3.8533 0.0376 0.0149 0.032 0.0353
4.5239 9.92 310 3.8367 0.0371 0.0142 0.0316 0.0352

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1