text_summarization-finetuned_cnn_dailymail
This model is a fine-tuned version of Falconsai/text_summarization on the cnn_dailymail dataset. It achieves the following results on the evaluation set:
- Loss: 2.0045
- Rouge1: 0.2361
- Rouge2: 0.11
- Rougel: 0.192
- Rougelsum: 0.2212
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
10.8721 | 0.99 | 62 | 8.1409 | 0.2058 | 0.0891 | 0.1673 | 0.1924 |
6.0137 | 2.0 | 125 | 4.2590 | 0.1997 | 0.082 | 0.1581 | 0.188 |
3.7261 | 2.99 | 187 | 3.0481 | 0.2196 | 0.0942 | 0.178 | 0.2066 |
3.3164 | 4.0 | 250 | 2.9085 | 0.2281 | 0.103 | 0.1852 | 0.2148 |
3.1784 | 4.99 | 312 | 2.7974 | 0.2282 | 0.1057 | 0.1869 | 0.2155 |
3.0345 | 6.0 | 375 | 2.6655 | 0.2318 | 0.1084 | 0.189 | 0.2177 |
2.8946 | 6.99 | 437 | 2.5411 | 0.2332 | 0.1095 | 0.1906 | 0.2193 |
2.7696 | 8.0 | 500 | 2.4400 | 0.2333 | 0.111 | 0.1916 | 0.22 |
2.684 | 8.99 | 562 | 2.3651 | 0.2342 | 0.11 | 0.1924 | 0.2204 |
2.6073 | 10.0 | 625 | 2.3010 | 0.2344 | 0.111 | 0.1922 | 0.2205 |
2.5517 | 10.99 | 687 | 2.2522 | 0.2346 | 0.1108 | 0.1925 | 0.2207 |
2.4845 | 12.0 | 750 | 2.2108 | 0.2327 | 0.1098 | 0.1916 | 0.2186 |
2.4484 | 12.99 | 812 | 2.1788 | 0.2329 | 0.1098 | 0.1922 | 0.2187 |
2.4194 | 14.0 | 875 | 2.1517 | 0.2336 | 0.1087 | 0.1919 | 0.2188 |
2.3908 | 14.99 | 937 | 2.1290 | 0.2343 | 0.109 | 0.1918 | 0.2195 |
2.3657 | 16.0 | 1000 | 2.1060 | 0.2324 | 0.107 | 0.1895 | 0.2175 |
2.3215 | 16.99 | 1062 | 2.0887 | 0.232 | 0.1066 | 0.1895 | 0.2171 |
2.3236 | 18.0 | 1125 | 2.0746 | 0.2328 | 0.1075 | 0.1899 | 0.2181 |
2.3018 | 18.99 | 1187 | 2.0612 | 0.2337 | 0.1067 | 0.1898 | 0.2183 |
2.2788 | 20.0 | 1250 | 2.0500 | 0.2337 | 0.1071 | 0.1901 | 0.2187 |
2.2502 | 20.99 | 1312 | 2.0406 | 0.2338 | 0.1072 | 0.1897 | 0.2187 |
2.2652 | 22.0 | 1375 | 2.0317 | 0.2339 | 0.1072 | 0.1898 | 0.2188 |
2.2508 | 22.99 | 1437 | 2.0253 | 0.2332 | 0.1069 | 0.1891 | 0.2181 |
2.2233 | 24.0 | 1500 | 2.0192 | 0.235 | 0.1087 | 0.1908 | 0.2202 |
2.2225 | 24.99 | 1562 | 2.0144 | 0.2352 | 0.1095 | 0.1912 | 0.2202 |
2.2248 | 26.0 | 1625 | 2.0107 | 0.2353 | 0.1094 | 0.1915 | 0.2204 |
2.235 | 26.99 | 1687 | 2.0075 | 0.235 | 0.1092 | 0.1915 | 0.2201 |
2.1964 | 28.0 | 1750 | 2.0056 | 0.2359 | 0.1096 | 0.1917 | 0.2209 |
2.1996 | 28.99 | 1812 | 2.0047 | 0.2361 | 0.11 | 0.192 | 0.2212 |
2.2228 | 29.76 | 1860 | 2.0045 | 0.2361 | 0.11 | 0.192 | 0.2212 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for RMWeerasinghe/text_summarization-finetuned_cnn_dailymail
Base model
Falconsai/text_summarizationDataset used to train RMWeerasinghe/text_summarization-finetuned_cnn_dailymail
Space using RMWeerasinghe/text_summarization-finetuned_cnn_dailymail 1
Evaluation results
- Rouge1 on cnn_dailymailvalidation set self-reported0.236