Add library_name and pipeline_tag
#2
by
nielsr
HF staff
- opened
README.md
CHANGED
@@ -1,18 +1,20 @@
|
|
1 |
---
|
2 |
-
license: llama2
|
3 |
datasets:
|
4 |
- RUCKBReasoning/TableLLM-SFT
|
5 |
language:
|
6 |
- en
|
|
|
7 |
tags:
|
8 |
- Table
|
9 |
- QA
|
10 |
- Code
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
|
14 |
|
15 |
-
| **[Paper](https://arxiv.org/abs/2403.19318)** | **[Training set](https://huggingface.co/datasets/RUCKBReasoning/TableLLM-SFT)** | **[Github](https://github.com/
|
16 |
|
17 |
We present **TableLLM**, a powerful large language model designed to handle tabular data manipulation tasks efficiently, whether they are embedded in spreadsheets or documents, meeting the demands of real office scenarios. The TableLLM series encompasses two distinct scales: [TableLLM-7B](https://huggingface.co/RUCKBReasoning/TableLLM-7b) and [TableLLM-13B](https://huggingface.co/RUCKBReasoning/TableLLM-13b), which are fine-tuned based on [CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) and [CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf).
|
18 |
|
@@ -92,4 +94,146 @@ The prompt template for direct text answer generation on short tables.
|
|
92 |
### [Solution][INST/]
|
93 |
````
|
94 |
|
95 |
-
For more details about how to use TableLLM, please refer to our GitHub page: <https://github.com/TableLLM/TableLLM>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
datasets:
|
3 |
- RUCKBReasoning/TableLLM-SFT
|
4 |
language:
|
5 |
- en
|
6 |
+
license: llama2
|
7 |
tags:
|
8 |
- Table
|
9 |
- QA
|
10 |
- Code
|
11 |
+
pipeline_tag: table-question-answering
|
12 |
+
library_name: transformers
|
13 |
---
|
14 |
|
15 |
# TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
|
16 |
|
17 |
+
| **[Paper](https://arxiv.org/abs/2403.19318)** | **[Training set](https://huggingface.co/datasets/RUCKBReasoning/TableLLM-SFT)** | **[Github](https://github.com/TableLLM/TableLLM)** | **[Homepage](https://tablellm.github.io/)** |
|
18 |
|
19 |
We present **TableLLM**, a powerful large language model designed to handle tabular data manipulation tasks efficiently, whether they are embedded in spreadsheets or documents, meeting the demands of real office scenarios. The TableLLM series encompasses two distinct scales: [TableLLM-7B](https://huggingface.co/RUCKBReasoning/TableLLM-7b) and [TableLLM-13B](https://huggingface.co/RUCKBReasoning/TableLLM-13b), which are fine-tuned based on [CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) and [CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf).
|
20 |
|
|
|
94 |
### [Solution][INST/]
|
95 |
````
|
96 |
|
97 |
+
For more details about how to use TableLLM, please refer to our GitHub page: <https://github.com/TableLLM/TableLLM>
|
98 |
+
|
99 |
+
# File information
|
100 |
+
|
101 |
+
The repository contains the following file information:
|
102 |
+
|
103 |
+
Filename: special_tokens_map.json
|
104 |
+
Content: {
|
105 |
+
"bos_token": {
|
106 |
+
"content": "<s>",
|
107 |
+
"lstrip": false,
|
108 |
+
"normalized": true,
|
109 |
+
"rstrip": false,
|
110 |
+
"single_word": false
|
111 |
+
},
|
112 |
+
"eos_token": {
|
113 |
+
"content": "</s>",
|
114 |
+
"lstrip": false,
|
115 |
+
"normalized": true,
|
116 |
+
"rstrip": false,
|
117 |
+
"single_word": false
|
118 |
+
},
|
119 |
+
"pad_token": "[PAD]",
|
120 |
+
"unk_token": {
|
121 |
+
"content": "<unk>",
|
122 |
+
"lstrip": false,
|
123 |
+
"normalized": true,
|
124 |
+
"rstrip": false,
|
125 |
+
"single_word": false
|
126 |
+
}
|
127 |
+
}
|
128 |
+
|
129 |
+
Filename: model.safetensors.index.json
|
130 |
+
Content: {
|
131 |
+
"metadata": {
|
132 |
+
"total_size": 26032056320
|
133 |
+
},
|
134 |
+
"weight_map": {
|
135 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
136 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
137 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
138 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
139 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
140 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
141 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
142 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
143 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
144 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
145 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
146 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
147 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
148 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
149 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
150 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
151 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
152 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
153 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
154 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
155 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
156 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
157 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
158 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
159 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
160 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
161 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
162 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
163 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
164 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
165 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
166 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
167 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
168 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
169 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
170 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
171 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
172 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
173 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
174 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
175 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
176 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
177 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
178 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
179 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
180 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
181 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
182 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
183 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
184 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
185 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
186 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
187 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
188 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
189 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
190 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
191 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
192 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
193 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
194 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
195 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
196 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
197 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
198 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
199 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
200 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
201 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
202 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
203 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
204 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
205 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
206 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
207 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
208 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
209 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
210 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
211 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
212 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
213 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
214 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
215 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
216 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
217 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
218 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
219 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
220 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
221 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
222 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
223 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
224 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
225 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
226 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
227 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
228 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
229 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
230 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
231 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
232 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
233 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
234 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
235 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
236 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
237 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
238 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
239 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-0
|