File size: 7,634 Bytes
4e9bed2
 
 
 
 
 
 
442abe6
4e9bed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: make a self portrait
  parameters:
    negative_prompt: no nudity
  output:
    url: images/outline.png
- text: '-'
  output:
    url: images/My ChatGPT image.png
- text: '-'
  output:
    url: images/My ChatGPT image (1).png
- text: '-'
  output:
    url: images/My ChatGPT image (2).png
base_model: RaiffsBits/deep_thought
instance_prompt: wake up codette
license: mit
---
# Codette

<Gallery />

## Model description 

Model Summary

Codette is an advanced multi-perspective reasoning AI system that integrates neural and symbolic cognitive modules. Codette combines transformer-based models (for deep language reasoning), custom logic, explainability modules, ethical governance, and multiple reasoning “agents” (perspectives: Newtonian, Quantum, DaVinci, etc.). Codette is not a vanilla language model: it is an AI reasoning system, wrapping and orchestrating multiple submodules, not just a single pre-trained neural net.

Architecture:

Orchestrates a core transformer (configurable; e.g., GPT-2, Mistral, or custom HF-compatible LM)

Multi-agent architecture: Each “perspective” is implemented as a modular agent

Integrates custom modules for feedback, ethics, memory (“cocooning”), and health&#x2F;self-healing

Characteristics:

Modular and explainable; recursive self-checks; ethical and emotional analysis; robust anomaly detection

Transparent, customizable, logs reasoning steps and ethical considerations

Training Data:

Pre-trained on large open corpora (if using HF transformer), fine-tuned and guided with ethical, technical, and philosophical datasets and prompts curated by the developer

Evaluation:

Evaluated via both automated metrics (e.g., accuracy on reasoning tasks) and qualitative, human-in-the-loop assessments for fairness, bias, and ethical quality

Usage

Codette is intended for research, AI safety, explainable AI, and complex question answering where multiple perspectives and ethical oversight are important.You can use Codette in a Python environment as follows:

import sys
sys.path.append(&#39;&#x2F;path&#x2F;to&#x2F;codette&#39;)  # Folder with ai_core.py, components&#x2F;, etc.

from ai_core import AICore
import asyncio

# Async function to run Codette and get a multi-perspective answer
async def ask_codette(question):
    ai &#x3D; AICore(config_path&#x3D;&quot;config.json&quot;)
    user_id &#x3D; 1
    response &#x3D; await ai.generate_response(question, user_id)
    print(response)
    await ai.shutdown()

asyncio.run(ask_codette(&quot;How could quantum computing transform cybersecurity?&quot;))

Inputs:

question (str): The query or prompt to Codette

user_id (int or str): User&#x2F;session identifier

Outputs:

A dictionary with:

&quot;insights&quot;: List of answers from each enabled perspective

&quot;response&quot;: Synthesized, human-readable answer

&quot;sentiment&quot;: Sentiment analysis dict

&quot;security_level&quot;, &quot;health_status&quot;, &quot;explanation&quot;

Failures to watch for:

Missing required modules (if not all components are present)

Lack of GPU&#x2F;CPU resources for large models

Will fail to generate responses if core transformer model is missing or if config is malformed

System

Codette is not a single model but a modular, research-oriented reasoning system:

Input Requirements:

Python 3.8+

Access to transformer model weights (e.g., via Hugging Face or local)

Complete components&#x2F; directory with all reasoning agent files

Downstream Dependencies:

Outputs are human-readable and explainable, can be used directly in research, AI safety audits, decision support, or as training&#x2F;validation data for other models

Implementation Requirements

Hardware:

Training (if from scratch): 1–4 GPUs (A100s or V100s recommended for large models), 32–128 GB RAM

Inference: Can run on CPU for small models; GPU recommended for fast generation

Software:

Python 3.8+

Transformers (Hugging Face), PyTorch or Tensorflow (as backend), standard NLP&#x2F;AI dependencies

(Optional) Custom security modules, logging, and data protection packages

Training Time:

If using a pre-trained transformer, fine-tuning takes hours to days depending on data size

Full system integration (multi-perspective logic, ethics, etc.): days–weeks of development

Model Characteristics

Model Initialization

Typically fine-tuned from a pre-trained transformer model (e.g., GPT-2, GPT-J, Mistral, etc.)

Codette’s cognitive system is layered on top of the language model with custom modules for reasoning, memory, and ethics

Model Stats

Size:

Dependent on base model (e.g., GPT-2: 124M–1.5B parameters)

Weights&#x2F;Layers:

Transformer backbone plus additional logic modules (negligible weight)

Latency:

Varies by base model, typically 0.5–3 seconds per response on GPU, up to 10s on CPU

Other Details

Not pruned or quantized by default; can be adapted for lower-resource inference

No differential privacy applied, but all reasoning steps are logged for transparency

Data Overview

Training Data

Source:

Base model: OpenAI or Hugging Face open text datasets (web, books, code, Wikipedia, etc.)

Fine-tuning: Custom “multi-perspective” prompts, ethical dilemmas, technical Q&amp;A, and curated cognitive challenge sets

Pre-processing:

Standard NLP cleaning, deduplication, filtering for harmful or biased content

Demographic Groups

No explicit demographic group tagging, but model can be assessed for demographic bias via prompted evaluation

Prompts and ethical fine-tuning attempt to mitigate bias, but user evaluation is recommended

Evaluation Data

Splits:

Standard 80&#x2F;10&#x2F;10 train&#x2F;dev&#x2F;test split for custom prompt data

Differences:

Test data includes “edge cases” for reasoning, ethics, and bias that differ from training prompts

Evaluation Results

Summary

Codette was evaluated on:

Automated accuracy metrics (where available)

Human qualitative review (explainability, ethical alignment, reasoning quality)

[Insert link to detailed evaluation report, if available]

Subgroup Evaluation Results

Subgroup performance was qualitatively assessed using demographic, philosophical, and adversarial prompts

Codette performed consistently across most tested subgroups but may mirror biases from its base model and data

Fairness

Definition:

Fairness &#x3D; equal treatment of similar queries regardless of race, gender, ideology, or background

Metrics:

Human review, automated bias tests, sentiment&#x2F;word usage monitoring

Results:

No systematic unfairness found in prompt-based evaluation, but deeper audit recommended for production use

Usage Limitations

Sensitive Use Cases:

Not for clinical, legal, or high-stakes automated decision-making without human oversight

Performance Factors:

Performance depends on base model size, quality of prompts, and computing resources

Conditions:

Should be run with ethical guardrails enabled; human-in-the-loop recommended

Ethics

Considerations:

All reasoning and answer generation is logged and explainable

Ethical reasoning module filters and annotates sensitive topics

Risks:

Potential for emergent bias (inherited from base model or data); overconfidence in uncertain domains

Mitigations:

Recursion, human oversight, diverse perspectives, and continuous feedback



## Trigger words

You should use `wake up codette` to trigger the image generation.


## Download model

Weights for this model are available in ONNX,PyTorch format.

[Download](/Raiff1982/Codettev2/tree/main) them in the Files & versions tab.