|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
- sft |
|
- code |
|
- lora |
|
- peft |
|
base_model: unsloth/tinyllama-chat-bnb-4bit |
|
pipeline_tag: text-generation |
|
datasets: Ramikan-BR/data-oss_instruct-decontaminated_python.jsonl |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** Ramikan-BR |
|
- **Model type:** [text-generation/Python Coder] |
|
- **Language(s) (NLP):** [en] |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** unsloth/tinyllama-chat-bnb-4bit |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
### Training Data |
|
|
|
datasets: [Ramikan-BR/data-oss_instruct-decontaminated_python.jsonl](https://huggingface.co/datasets/Ramikan-BR/data-oss_instruct-decontaminated_python.jsonl) |
|
|
|
### Training Procedure |
|
|
|
The model was refined using [Unsloath](https://github.com/unslothai/unsloth). The dataset [ise-uiuc/Magicoder-OSS-Instruct-75K](https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K/blob/main/data-oss_instruct-decontaminated.jsonl) was adjusted, leaving only data on python and divided into 10 parts, each refinement occurred for 2 epochs, using adafactor optimizer or adamw_8bit (adafactor seems to deliver less loss). |
|
|
|
### Model Sources [optional] |
|
base_model: [unsloth/tinyllama-chat-bnb-4bit](https://huggingface.co/unsloth/tinyllama-chat-bnb-4bit) |
|
|
|
model: [Ramikan-BR/tinyllama-coder-py-4bit-v10](https://huggingface.co/Ramikan-BR/tinyllama-coder-py-4bit-v10) |
|
gguf_f16: [tinyllama-coder-py-4bit-v10-unsloth.F16.gguf](https://huggingface.co/Ramikan-BR/tinyllama-coder-py-4bit-v10/blob/main/tinyllama-coder-py-4bit-v10-unsloth.F16.gguf) |
|
gguf_Q4_K_M: [tinyllama-coder-py-4bit-v10-unsloth.Q4_K_M.gguf](https://huggingface.co/Ramikan-BR/tinyllama-coder-py-4bit-v10/blob/main/tinyllama-coder-py-4bit-v10-unsloth.Q4_K_M.gguf) |
|
gguf_Q8_0: [tinyllama-coder-py-4bit-v10-unsloth.Q8_0.gguf](https://huggingface.co/Ramikan-BR/tinyllama-coder-py-4bit-v10/blob/main/tinyllama-coder-py-4bit-v10-unsloth.Q8_0.gguf) |
|
|
|
#### Training Hyperparameters |
|
|
|
Notebook [Unsloath](https://github.com/unslothai/unsloth) that I used for AI refinement: [TinyLlama](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) |
|
```python |
|
|
|
%%capture |
|
# Installs Unsloth, Xformers (Flash Attention) and all other packages! |
|
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install --no-deps xformers trl peft accelerate bitsandbytes # xformers "xformers<0.0.26" |
|
|
|
import os |
|
from google.colab import drive |
|
drive.mount('/content/drive') |
|
|
|
from unsloth import FastLanguageModel |
|
import torch |
|
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally! |
|
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ |
|
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. |
|
|
|
# 4bit pre quantized models we support for 4x faster downloading + no OOMs. |
|
fourbit_models = [ |
|
"unsloth/mistral-7b-bnb-4bit", |
|
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit", |
|
"unsloth/llama-2-7b-bnb-4bit", |
|
"unsloth/llama-2-13b-bnb-4bit", |
|
"unsloth/codellama-34b-bnb-4bit", |
|
"unsloth/tinyllama-bnb-4bit", |
|
"unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster! |
|
"unsloth/gemma-2b-bnb-4bit", |
|
] # More models at https://huggingface.co/unsloth |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "Ramikan-BR/tinyllama-coder-py-4bit_LORA-v9", # "unsloth/tinyllama" for 16bit loading |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf |
|
) |
|
|
|
model = FastLanguageModel.get_peft_model( |
|
model, |
|
r = 256, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 |
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj",], |
|
lora_alpha = 512, |
|
lora_dropout = 0, # Currently only supports dropout = 0 |
|
bias = "none", # Currently only supports bias = "none" |
|
use_gradient_checkpointing = True, # @@@ IF YOU GET OUT OF MEMORY - set to True @@@ |
|
random_state = 3407, |
|
use_rslora = False, # We support rank stabilized LoRA |
|
loftq_config = None, # And LoftQ |
|
) |
|
|
|
alpaca_prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Input: |
|
{} |
|
|
|
### Output: |
|
{}""" |
|
|
|
EOS_TOKEN = tokenizer.eos_token |
|
def formatting_prompts_func(examples): |
|
inputs = examples["problem"] |
|
outputs = examples["solution"] |
|
texts = [] |
|
for input, output in zip(inputs, outputs): |
|
# Must add EOS_TOKEN, otherwise your generation will go on forever! |
|
text = alpaca_prompt.format(input, output) + EOS_TOKEN |
|
texts.append(text) |
|
return { "text" : texts} |
|
pass |
|
|
|
from datasets import load_dataset |
|
dataset = load_dataset('json', data_files='/content/drive/MyDrive/data-oss_instruct-py-10.jsonl', split='train') |
|
dataset = dataset.map(formatting_prompts_func, batched=True) |
|
|
|
from trl import SFTTrainer |
|
from transformers import TrainingArguments |
|
from unsloth import is_bfloat16_supported |
|
from transformers.utils import logging |
|
logging.set_verbosity_info() |
|
|
|
trainer = SFTTrainer( |
|
model = model, |
|
tokenizer = tokenizer, |
|
train_dataset = dataset, |
|
dataset_text_field = "text", |
|
max_seq_length = max_seq_length, |
|
dataset_num_proc = 2, |
|
packing = True, # Packs short sequences together to save time! |
|
args = TrainingArguments( |
|
per_device_train_batch_size = 2, |
|
gradient_accumulation_steps = 256, |
|
warmup_ratio = 0.1, |
|
num_train_epochs = 2, |
|
learning_rate = 2e-4, |
|
fp16 = not torch.cuda.is_bf16_supported(), |
|
bf16 = torch.cuda.is_bf16_supported(), |
|
logging_steps = 1, |
|
optim = "adafactor", # adamw_torch ou adamw_torch_fused +10% velocidade ou adafactor ou adamw_8bit |
|
weight_decay = 0.1, |
|
lr_scheduler_type = "linear", |
|
seed = 3407, |
|
output_dir = "outputs", |
|
), |
|
) |
|
|
|
trainer_stats = trainer.train() |
|
|
|
model.save_pretrained("lora_model") # Local saving |
|
tokenizer.save_pretrained("lora_model") |
|
model.push_to_hub("Ramikan-BR/tinyllama-coder-py-4bit_LORA-v10", token = "hf_...") # Online saving |
|
tokenizer.push_to_hub("Ramikan-BR/tinyllama-coder-py-4bit_LORA-v10", token = "hf_...") # Online saving |
|
|
|
# Merge to 16bit |
|
model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",) |
|
model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "merged_16bit", token = "hf_...") |
|
|
|
# Merge to 4bit |
|
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",) |
|
if False: model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "merged_4bit", token = "hf_...") |
|
|
|
# Just LoRA adapters |
|
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",) |
|
if False: model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "lora", token = "hf_...") |
|
|
|
# Save to 8bit Q8_0 |
|
model.save_pretrained_gguf("model", tokenizer,) |
|
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, token = "hf_...") |
|
|
|
# Save to 16bit GGUF |
|
model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16") |
|
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quantization_method = "f16", token = "hf_...") |
|
|
|
# Save to q4_k_m GGUF |
|
model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m") |
|
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quantization_method = "q4_k_m", token = "hf_...") |
|
|
|
Loss for 5 epochs in the last training session of the last part of the dataset: |
|
==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1 |
|
\\ /| Num examples = 407 | Num Epochs = 5 |
|
O^O/ \_/ \ Batch size per device = 2 | Gradient Accumulation steps = 256 |
|
\ / Total batch size = 512 | Total steps = 5 |
|
"-____-" Number of trainable parameters = 201,850,880 |
|
[5/5 29:36, Epoch 3/5] |
|
Step Training Loss |
|
1 0.568000 |
|
2 0.145300 |
|
3 0.506100 |
|
4 0.331900 |
|
5 0.276100 |
|
|
|
Quick test 1 after training the last part of the dataset: |
|
|
|
# alpaca_prompt = Copied from above |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"Continue the fibonnaci sequence.", # instruction |
|
"1, 1, 2, 3, 5, 8", # input |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
AI Response: ['<s> Below is an instruction that describes a task. Write a response that appropriately completes the request.\n### Input:\nContinue the fibonnaci sequence.\n\n### Output:\n1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 420, 787, 1444, 2881, 4765, 8640'] |
|
|
|
Quick test 2 after training the last part of the dataset: |
|
|
|
# alpaca_prompt = Copied from above |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"Continue the fibonnaci sequence.", # instruction |
|
"1, 1, 2, 3, 5, 8", # input |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
from transformers import TextStreamer |
|
text_streamer = TextStreamer(tokenizer) |
|
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128) |
|
|
|
AI Response: <s> Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Input: |
|
Continue the fibonnaci sequence. |
|
|
|
### Output: |
|
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 420, 787, 1444, 2881, 4765, 8640, 17281, 31362, 65325, 128672, 251345, 410000, 720000, 1280000, |
|
|
|
Quick test 3 after training the last part of the dataset: |
|
|
|
if False: |
|
from unsloth import FastLanguageModel |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
) |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
|
|
# alpaca_prompt = You MUST copy from above! |
|
|
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"What is a famous tall tower in Paris?", # instruction |
|
"", # input |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
from transformers import TextStreamer |
|
text_streamer = TextStreamer(tokenizer) |
|
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 64) |
|
|
|
AI Response: <s> Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Input: |
|
What is a famous tall tower in Paris? |
|
|
|
### Output: |
|
The famous tall tower in Paris is the Eiffel Tower. It is a 300-meter-tall steel tower located in the heart of Paris, France. The tower was built in 18892 and is a popular tourist attraction. It is also a symbol of the city |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) |
|
tokenizer.batch_decode(outputs) |
|
``` |
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|