Ramikan-BR commited on
Commit
09879c8
1 Parent(s): 68b3370

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -0
README.md CHANGED
@@ -184,6 +184,20 @@ model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quan
184
  model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
185
  model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quantization_method = "q4_k_m", token = "hf_...")
186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
  Parameters:
188
 
189
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
184
  model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
185
  model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quantization_method = "q4_k_m", token = "hf_...")
186
 
187
+ Loss for 5 epochs in the last training session of the last part of the dataset:
188
+ ==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1
189
+ \\ /| Num examples = 407 | Num Epochs = 5
190
+ O^O/ \_/ \ Batch size per device = 2 | Gradient Accumulation steps = 256
191
+ \ / Total batch size = 512 | Total steps = 5
192
+ "-____-" Number of trainable parameters = 201,850,880
193
+ [5/5 29:36, Epoch 3/5]
194
+ Step Training Loss
195
+ 1 0.568000
196
+ 2 0.145300
197
+ 3 0.506100
198
+ 4 0.331900
199
+ 5 0.276100
200
+
201
  Parameters:
202
 
203
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.