Deberta for Sentiment Analysis
This is a Deberta model finetuned on over 1 million reviews from Amazon's multi-reviews dataset.
How to use the model
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
def get_sentiment(sentence):
bert_dict = {}
vectors = tokenizer(sentence, return_tensors='pt').to(device)
outputs = bert_model(**vectors).logits
probs = torch.nn.functional.softmax(outputs, dim = 1)[0]
bert_dict['neg'] = round(probs[0].item(), 3)
bert_dict['neu'] = round(probs[1].item(), 3)
bert_dict['pos'] = round(probs[2].item(), 3)
return bert_dict
MODEL_NAME = 'RashidNLP/Amazon-Deberta-Base-Sentiment'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
get_sentiment("This is quite a mess you have made")
- Downloads last month
- 112
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.