RayenLLM's picture
End of training
9138a68 verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
model-index:
  - name: bert-practice-classifier
    results: []

bert-practice-classifier

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5419
  • Accuracy: 0.524
  • Auc: 0.65
  • Precision: 0.714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc Precision
0.5815 1.0 34 0.6348 0.619 0.688 0.9
0.5744 2.0 68 0.5624 0.667 0.688 0.765
0.5532 3.0 102 0.5057 0.762 0.688 0.789
0.563 4.0 136 0.5677 0.571 0.688 0.769
0.514 5.0 170 0.5423 0.667 0.662 0.765
0.5349 6.0 204 0.5564 0.571 0.65 0.769
0.5298 7.0 238 0.5672 0.571 0.65 0.769
0.4964 8.0 272 0.5173 0.667 0.65 0.765
0.5083 9.0 306 0.5435 0.571 0.65 0.769
0.4908 10.0 340 0.5419 0.524 0.65 0.714

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0