|
--- |
|
language: |
|
- en |
|
tags: |
|
- moe |
|
- int4 |
|
- w4a16 |
|
- vllm |
|
license: other |
|
license_name: deepseek |
|
license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL |
|
library_name: transformers |
|
--- |
|
|
|
# DeepSeek-Coder-V2-Instruct-0724-quantized.w4a16 |
|
|
|
## Model Overview |
|
- **Model Architecture:** DeepSeek-Coder-V2-Instruct-0724 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT4 |
|
- **Activation quantization:** None |
|
- **Release Date:** 3/1/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [DeepSeek-Coder-V2-Instruct-0724](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct-0724). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing only the weights to INT4 data type, ready for inference with vLLM >= 0.5.2. |
|
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. The weights of the linear operators within transformers blocks are quantized, except the MLP routers. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 4096, 2 |
|
model_name = "neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-quantized.w4a16" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) |
|
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with the following command: |
|
|
|
```bash |
|
python quantize.py --model_path deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 --quant_path "output_dir" --calib_size 256 --dampening_frac 0.1 --observer mse --actorder False |
|
``` |
|
|
|
|
|
```python |
|
`from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply |
|
import argparse |
|
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy |
|
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map |
|
import torch |
|
|
|
|
|
def parse_actorder(value): |
|
# Interpret the input value for --actorder |
|
if value.lower() == "false": |
|
return False |
|
elif value.lower() == "weight": |
|
return "weight" |
|
elif value.lower() == "group": |
|
raise ValueError("group not supported for TP>1 and MoEs") |
|
else: |
|
raise argparse.ArgumentTypeError("Invalid value for --actorder. Use 'group' or 'False'.") |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--model_path', type=str) |
|
parser.add_argument('--quant_path', type=str) |
|
parser.add_argument('--num_bits', type=int, default=4) |
|
parser.add_argument('--sequential_update', type=bool, default=True) |
|
parser.add_argument('--calib_size', type=int, default=256) |
|
parser.add_argument('--dampening_frac', type=float, default=0.05) |
|
parser.add_argument('--observer', type=str, default="minmax") |
|
parser.add_argument( |
|
'--actorder', |
|
type=parse_actorder, |
|
default=False, # Default value is False |
|
help="Specify actorder as 'group' (string) or False (boolean)." |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
device_map = calculate_offload_device_map( |
|
args.model_path, |
|
reserve_for_hessians=True, |
|
num_gpus=torch.cuda.device_count(), |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
) |
|
|
|
model = SparseAutoModelForCausalLM.from_pretrained( |
|
args.model_path, |
|
device_map=device_map, |
|
torch_dtype=torch.bfloat16, |
|
use_cache=False, |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path) |
|
|
|
NUM_CALIBRATION_SAMPLES = args.calib_size |
|
DATASET_ID = "garage-bAInd/Open-Platypus" |
|
DATASET_SPLIT = "train" |
|
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
|
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) |
|
|
|
def preprocess(example): |
|
concat_txt = example["instruction"] + "\n" + example["output"] |
|
return {"text": concat_txt} |
|
|
|
ds = ds.map(preprocess) |
|
|
|
def tokenize(sample): |
|
return tokenizer( |
|
sample["text"], |
|
padding=False, |
|
truncation=False, |
|
add_special_tokens=True, |
|
) |
|
|
|
|
|
ds = ds.map(tokenize, remove_columns=ds.column_names) |
|
|
|
quant_scheme = QuantizationScheme( |
|
targets=["Linear"], |
|
weights=QuantizationArgs( |
|
num_bits=args.num_bits, |
|
type=QuantizationType.INT, |
|
symmetric=True, |
|
group_size=128, |
|
strategy=QuantizationStrategy.GROUP, |
|
observer=args.observer, |
|
actorder=args.actorder |
|
), |
|
input_activations=None, |
|
output_activations=None, |
|
) |
|
|
|
recipe = [ |
|
GPTQModifier( |
|
targets=["Linear"], |
|
ignore=["lm_head", "re:.*\.mlp\.gate$"], |
|
sequential_update=args.sequential_update, |
|
dampening_frac=args.dampening_frac, |
|
config_groups={"group_0": quant_scheme}, |
|
) |
|
] |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
num_calibration_samples=args.calib_size, |
|
) |
|
|
|
# Save to disk compressed. |
|
SAVE_DIR = args.quant_path |
|
model.save_pretrained(SAVE_DIR, save_compressed=True, skip_compression_stats=True) |
|
tokenizer.save_pretrained(SAVE_DIR) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on [HumanEval and HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval+](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following commands: |
|
|
|
``` |
|
python evalplus/codegen/generate.py --model neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-quantized.w4a16 --bs 16 --temperature 0.2 --n_samples 50 --root "./results" --dataset humaneval --backend vllm --dtype auto --tp 8 |
|
|
|
python evalplus/evalplus/sanitize.py results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-quantized.w4a16_vllm_temp_0.2 |
|
|
|
evalplus.evaluate --dataset humaneval --samples results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-quantized.w4a16_vllm_temp_0.2-sanitized |
|
``` |
|
|
|
|
|
### Accuracy |
|
|
|
#### HumanEval evaluation scores |
|
|
|
| Metric | deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 | neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-quantized.w4a16 | |
|
|------------------------|:---------------------------------:|:-------------------------------------------:| |
|
| HumanEval pass@1 | 89.3 | 85.5 | |
|
| HumanEval pass@10 | 93.1 | 91.1 | |
|
| HumanEval+ pass@1 | 82.9 | 80.7 | |
|
| HumanEval+ pass@10 | 87.6 | 85.9 | |
|
| **Average Score** | **88.23** | **85.8** | |
|
| **Recovery** | **100.00** | **97.25** | |
|
|
|
|