RicardoLee's picture
Llama2-base-7B-Chinese-50W-LoRA ver 0.0.1
6af516a
|
raw
history blame
5.1 kB
metadata
language:
  - zh
  - en
tags:
  - llama2
  - llama2-base
  - llama2-base-7B

7B Chinese Chatbot trained based on LLama2-base 7B (Pure LoRA Training)

Introduction

在完成了Llama2-chat 7B ChineseLlama2-chat 13B Chinese 的训练后,我非常好奇能否直接基于Llama2-base 系列直接进行SFT训练。这也是本模型仓库的初衷。

终于,在RicardoLee/Llama2-base-7B-Chinese-50W-pre_releaseRicardoLee/Llama2-base-7B-Chinese-50W-Full2LoRA 之后,我成功探索出了能稳定训练LoRA的参数,并最终完成了50W 数据的LoRA 训练。

训练数据使用BELLE项目中采样的50万SFT数据进行SFT训练。

After finishing the training of Llama2-chat 7B Chinese and Llama2-chat 13B Chinese, I am deeply intrigued by the possibility of conducting SFT (Style-Fine-Tuning) training directly based on the Llama2-base series. This is the fundamental purpose of this model repository.

Finally, after RicardoLee/Llama2-base-7B-Chinese-50W-pre_releaseRicardoLee/Llama2-base-7B-Chinese-50W-Full2LoRA, I did find the right hyperparams to do the LoRA training stabelly based on Llama2-base 7B model. For more details please refer to the Train Detail section.

The training data is sampled from BELLE project, which consists of 500,000 SFT samples.

Train Detail

一些训练上的细节:

  1. 训练框架:该模型使用了修改过的Chinese-LLaMA-Alpaca项目进行训练。
  2. Tokenizer:该模型使用了Chinese-Alpaca-Plus模型的tokenizer.model。这是因为LLama2本身的tokenizer.model同LLama1是一摸一样的。因此理论上可以完全复用Chinese-LLaMa项目的tokenizer而不会产生如何错位问题。
  3. 训练参数:该模型训练使用的超参数为:LoRA rank: 64, LR: 4e-4, Warmup ratio: 0.001.
  4. 训练资源:8卡V100。21小时
  5. 训练起始的loss:9.1402
  6. 训练终止的loss:1.4104

Some details in training:

  1. Trianing Framework: This model is trained on modified Chinese-LLaMA-Alpaca Framework.
  2. Tokenizer: This model utilizes the tokenizer.model from the Chinese-Alpaca-Plus model. The reason for this choice is that the tokenizer.model in LLama2 is identical to the one used in LLama1. As a result, it is theoretically feasible to entirely reuse the tokenizer from the Chinese-LLaMa project without encountering any issues related to token misalignment.
  3. Training Parameters: The hyperparams are: LoRA rank: 64, LR: 4e-4, Warmup ratio: 0.001.
  4. Training Resource: 8*V100, 21 hours.
  5. Initial Loss: 9.1402
  6. Train Loss: 1.4104

Inference

该模型依然采用stanford alpaca 模版。因此在测试时且别忘记添加开场白。开场白如下:

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\n${Your Content}\n\n### Response:\n\n"

对于带上文的对话,开场白如下:

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\nHuman:${Previous Human Content}\nAssistant:${Previous Assistance Content}\nHuman:${Your Question}\n\n### Response:\n\n"

This model still using the Stanford Alpaca template. Therefore, don't forget to add prologue template. The prologue template is:

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\n${Your Content}\n\n### Response:\n\n"

For dialogue with context, the prelogue template is:

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\nHuman:${Previous Human Content}\nAssistant:${Previous Machine Content}\nHuman:${Your Question}\n\n### Response:\n\n"

Licence

本仓库的模型依照 Apache-2.0 协议开源,模型的权重的使用则需要遵循LLama2MODEL LICENCE

This repository's models are open-sourced under the Apache-2.0 license, and their weight usage must adhere to LLama2 MODEL LICENCE license.

Future Work

将会在近期逐步放出

  1. 更大SFT数据规模训练下的模型。
  2. 13B及以下的LLama2 同LLama2-chat的模型,以供大家对比。

I will release the following models:

  1. Models trained on larger data scale.
  2. Models trained on LLama2 and LLama2-chat (under the 13B, since I only have V100), for comparison.