YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

hebrew-gpt_neo-small - bnb 4bits

Original model description:

language: he

thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg widget:

  • text: "ืขื•ื“ ื‘ื™ืžื™ ืงื“ื"
  • text: "ืงื•ืจืื™ื ืœื™ ื“ื•ืจื•ืŸ ื•ืื ื™ ืžืขื•ื ื™ื™ืŸ ืœ"
  • text: "ืงื•ืจืื™ื ืœื™ ืื™ืฆื™ืง ื•ืื ื™ ื—ื•ืฉื‘ ืฉ"
  • text: "ื”ื—ืชื•ืœ ืฉืœืš ืžืื•ื“ ื—ืžื•ื“ ื•"

license: mit

hebrew-gpt_neo-small

Hebrew text generation model based on EleutherAI's gpt-neo. Each was trained on a TPUv3-8 which was made avilable to me via the TPU Research Cloud Program.

Datasets

  1. An assortment of various Hebrew corpuses - I have made it available here

  2. oscar / unshuffled_deduplicated_he - Homepage | Dataset Permalink

The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture.

  1. CC100-Hebrew Dataset Homepage

Created by Conneau & Wenzek et al. at 2020, the CC100-Hebrew This dataset is one of the 100 corpora of monolingual data that was processed from the January-December 2018 Commoncrawl snapshots from the CC-Net repository. The size of this corpus is 6.1G., in Hebrew language.

Training Config

Available here

Usage

Google Colab Notebook

Available here

Simple usage sample code


!pip install tokenizers==0.10.2 transformers==4.6.0

from transformers import AutoTokenizer, AutoModelForCausalLM
  
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-small")
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-small", pad_token_id=tokenizer.eos_token_id)

prompt_text = "ืื ื™ ืื•ื”ื‘ ืฉื•ืงื•ืœื“ ื•ืขื•ื’ื•ืช"
max_len = 512
sample_output_num = 3
seed = 1000

import numpy as np
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()

print(f"device: {device}, n_gpu: {n_gpu}")

np.random.seed(seed)
torch.manual_seed(seed)
if n_gpu > 0:
    torch.cuda.manual_seed_all(seed)

model.to(device)

encoded_prompt = tokenizer.encode(
    prompt_text, add_special_tokens=False, return_tensors="pt")

encoded_prompt = encoded_prompt.to(device)

if encoded_prompt.size()[-1] == 0:
        input_ids = None
else:
        input_ids = encoded_prompt

print("input_ids = " + str(input_ids))

if input_ids != None:
  max_len += len(encoded_prompt[0])
  if max_len > 2048:
    max_len = 2048

print("Updated max_len = " + str(max_len))

stop_token = "<|endoftext|>"
new_lines = "\n\n\n"

sample_outputs = model.generate(
    input_ids,
    do_sample=True, 
    max_length=max_len, 
    top_k=50, 
    top_p=0.95, 
    num_return_sequences=sample_output_num
)

print(100 * '-' + "\n\t\tOutput\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):

  text = tokenizer.decode(sample_output, skip_special_tokens=True)
  
  # Remove all text after the stop token
  text = text[: text.find(stop_token) if stop_token else None]

  # Remove all text after 3 newlines
  text = text[: text.find(new_lines) if new_lines else None]

  print("\n{}: {}".format(i, text))
  print("\n" + 100 * '-')
Downloads last month
76
Safetensors
Model size
84.1M params
Tensor type
F32
ยท
FP16
ยท
U8
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.