|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
hebrew-gpt_neo-small - bnb 8bits |
|
- Model creator: https://huggingface.co/Norod78/ |
|
- Original model: https://huggingface.co/Norod78/hebrew-gpt_neo-small/ |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
language: he |
|
|
|
thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg |
|
widget: |
|
- text: "ืขืื ืืืื ืงืื" |
|
- text: "ืงืืจืืื ืื ืืืจืื ืืื ื ืืขืื ืืื ื" |
|
- text: "ืงืืจืืื ืื ืืืฆืืง ืืื ื ืืืฉื ืฉ" |
|
- text: "ืืืชืื ืฉืื ืืืื ืืืื ื" |
|
|
|
license: mit |
|
--- |
|
|
|
# hebrew-gpt_neo-small |
|
|
|
Hebrew text generation model based on [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo). Each was trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program. |
|
|
|
## Datasets |
|
|
|
1. An assortment of various Hebrew corpuses - I have made it available [here](https://mega.nz/folder/CodSSA4R#4INvMes-56m_WUi7jQMbJQ) |
|
|
|
|
|
2. oscar / unshuffled_deduplicated_he - [Homepage](https://oscar-corpus.com) | [Dataset Permalink](https://huggingface.co/datasets/viewer/?dataset=oscar&config=unshuffled_deduplicated_he) |
|
|
|
The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture. |
|
|
|
3. CC100-Hebrew Dataset [Homepage](https://metatext.io/datasets/cc100-hebrew) |
|
|
|
Created by Conneau & Wenzek et al. at 2020, the CC100-Hebrew This dataset is one of the 100 corpora of monolingual data that was processed from the January-December 2018 Commoncrawl snapshots from the CC-Net repository. The size of this corpus is 6.1G., in Hebrew language. |
|
|
|
## Training Config |
|
|
|
Available [here](https://github.com/Norod/hebrew-gpt_neo/tree/main/hebrew-gpt_neo-small/configs) <BR> |
|
|
|
## Usage |
|
|
|
### Google Colab Notebook |
|
|
|
Available [here ](https://colab.research.google.com/github/Norod/hebrew-gpt_neo/blob/main/hebrew-gpt_neo-small/Norod78_hebrew_gpt_neo_small_Colab.ipynb) <BR> |
|
|
|
|
|
#### Simple usage sample code |
|
|
|
```python |
|
|
|
!pip install tokenizers==0.10.2 transformers==4.6.0 |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-small") |
|
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-small", pad_token_id=tokenizer.eos_token_id) |
|
|
|
prompt_text = "ืื ื ืืืื ืฉืืงืืื ืืขืืืืช" |
|
max_len = 512 |
|
sample_output_num = 3 |
|
seed = 1000 |
|
|
|
import numpy as np |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count() |
|
|
|
print(f"device: {device}, n_gpu: {n_gpu}") |
|
|
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
if n_gpu > 0: |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
model.to(device) |
|
|
|
encoded_prompt = tokenizer.encode( |
|
prompt_text, add_special_tokens=False, return_tensors="pt") |
|
|
|
encoded_prompt = encoded_prompt.to(device) |
|
|
|
if encoded_prompt.size()[-1] == 0: |
|
input_ids = None |
|
else: |
|
input_ids = encoded_prompt |
|
|
|
print("input_ids = " + str(input_ids)) |
|
|
|
if input_ids != None: |
|
max_len += len(encoded_prompt[0]) |
|
if max_len > 2048: |
|
max_len = 2048 |
|
|
|
print("Updated max_len = " + str(max_len)) |
|
|
|
stop_token = "<|endoftext|>" |
|
new_lines = "\n\n\n" |
|
|
|
sample_outputs = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
max_length=max_len, |
|
top_k=50, |
|
top_p=0.95, |
|
num_return_sequences=sample_output_num |
|
) |
|
|
|
print(100 * '-' + "\n\t\tOutput\n" + 100 * '-') |
|
for i, sample_output in enumerate(sample_outputs): |
|
|
|
text = tokenizer.decode(sample_output, skip_special_tokens=True) |
|
|
|
# Remove all text after the stop token |
|
text = text[: text.find(stop_token) if stop_token else None] |
|
|
|
# Remove all text after 3 newlines |
|
text = text[: text.find(new_lines) if new_lines else None] |
|
|
|
print("\n{}: {}".format(i, text)) |
|
print("\n" + 100 * '-') |
|
|
|
``` |
|
|
|
|
|
|