Quantization made by Richard Erkhov.
gemma-2b-orpo - GGUF
- Model creator: https://huggingface.co/anakin87/
- Original model: https://huggingface.co/anakin87/gemma-2b-orpo/
Name | Quant method | Size |
---|---|---|
gemma-2b-orpo.Q2_K.gguf | Q2_K | 1.08GB |
gemma-2b-orpo.IQ3_XS.gguf | IQ3_XS | 1.16GB |
gemma-2b-orpo.IQ3_S.gguf | IQ3_S | 1.2GB |
gemma-2b-orpo.Q3_K_S.gguf | Q3_K_S | 1.2GB |
gemma-2b-orpo.IQ3_M.gguf | IQ3_M | 1.22GB |
gemma-2b-orpo.Q3_K.gguf | Q3_K | 1.29GB |
gemma-2b-orpo.Q3_K_M.gguf | Q3_K_M | 1.29GB |
gemma-2b-orpo.Q3_K_L.gguf | Q3_K_L | 1.36GB |
gemma-2b-orpo.IQ4_XS.gguf | IQ4_XS | 1.4GB |
gemma-2b-orpo.Q4_0.gguf | Q4_0 | 1.44GB |
gemma-2b-orpo.IQ4_NL.gguf | IQ4_NL | 1.45GB |
gemma-2b-orpo.Q4_K_S.gguf | Q4_K_S | 1.45GB |
gemma-2b-orpo.Q4_K.gguf | Q4_K | 1.52GB |
gemma-2b-orpo.Q4_K_M.gguf | Q4_K_M | 1.52GB |
gemma-2b-orpo.Q4_1.gguf | Q4_1 | 1.56GB |
gemma-2b-orpo.Q5_0.gguf | Q5_0 | 1.68GB |
gemma-2b-orpo.Q5_K_S.gguf | Q5_K_S | 1.68GB |
gemma-2b-orpo.Q5_K.gguf | Q5_K | 1.71GB |
gemma-2b-orpo.Q5_K_M.gguf | Q5_K_M | 1.71GB |
gemma-2b-orpo.Q5_1.gguf | Q5_1 | 1.79GB |
gemma-2b-orpo.Q6_K.gguf | Q6_K | 1.92GB |
gemma-2b-orpo.Q8_0.gguf | Q8_0 | 2.49GB |
Original model description:
license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms library_name: transformers base_model: google/gemma-2b tags: - trl - orpo - generated_from_trainer model-index: - name: gemma-2b-orpo results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 49.15 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 73.72 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 38.52 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.53 source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 64.33 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 13.87 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=anakin87%2Fgemma-2b-orpo name: Open LLM Leaderboard datasets: - alvarobartt/dpo-mix-7k-simplified language: - en
gemma-2b-orpo
This is an ORPO fine-tune of google/gemma-2b with
alvarobartt/dpo-mix-7k-simplified
.
โก Quantized version (GGUF): https://huggingface.co/anakin87/gemma-2b-orpo-GGUF
ORPO
ORPO (Odds Ratio Preference Optimization) is a new training paradigm that combines the usually separated phases of SFT (Supervised Fine-Tuning) and Preference Alignment (usually performed with RLHF or simpler methods like DPO).
- Faster training
- Less memory usage (no reference model needed)
- Good results!
๐ Evaluation
Nous
gemma-2b-orpo performs well for its size on Nous' benchmark suite.
(evaluation conducted using LLM AutoEval).
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
anakin87/gemma-2b-orpo ๐ | 39.45 | 23.76 | 58.25 | 44.47 | 31.32 |
mlabonne/Gemmalpaca-2B ๐ | 38.39 | 24.48 | 51.22 | 47.02 | 30.85 |
google/gemma-2b-it ๐ | 36.1 | 23.76 | 43.6 | 47.64 | 29.41 |
google/gemma-2b ๐ | 34.26 | 22.7 | 43.35 | 39.96 | 31.03 |
Open LLM Leaderboard
Detailed results can be found here.
By comparison, on the Open LLM Leaderboard, google/gemma-2b-it has an average of 42.75.
Metric | Value |
---|---|
Avg. | 47.35 |
AI2 Reasoning Challenge (25-Shot) | 49.15 |
HellaSwag (10-Shot) | 73.72 |
MMLU (5-Shot) | 38.52 |
TruthfulQA (0-shot) | 44.53 |
Winogrande (5-shot) | 64.33 |
GSM8k (5-shot) | 13.87 |
๐ Dataset
alvarobartt/dpo-mix-7k-simplified
is a simplified version of argilla/dpo-mix-7k
.
You can find more information in the dataset card.
๐ฎ Model in action
Usage notebook
๐ Chat and RAG using Haystack
Simple text generation with Transformers
The model is small, so it runs smoothly on Colab. It is also fine to load the model using quantization.
# pip install transformers accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="anakin87/gemma-2b-orpo", torch_dtype=torch.bfloat16, device_map="auto")
messages = [{"role": "user", "content": "Write a rap song on Vim vs VSCode."}]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False)
outputs = pipe(prompt, max_new_tokens=500, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Training
The model was trained using HF TRL. ๐ Training notebook
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 11