YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

PhiMerge-2.7B-Dare-daser - bnb 8bits

Original model description:

license: cc-by-nc-4.0 base_model: Johnsnowlabs/PhiMerge-2.7B-Dare tags: - generated_from_trainer - Phi - axolotl - instruct - finetune - chatml - gpt4 - synthetic data - distillation model-index: - name: PhiMerge-2.7B-Dare-daser results: [] datasets: - argilla/distilabel-capybara-dpo-7k-binarized language: - en library_name: transformers pipeline_tag: text-generation

PhiMerge-2.7B-Dare-daser

image/png

PhiMerge-2.7B-Dare-daser is a mixture of two techniques that are LaserQlora and Dora. This model is a DPO fine-tuned of johnsnowlabs/PhiMerge-2.7B-Dare using the argilla/distilabel-capybara-dpo-7k-binarized preference dataset. The model has been trained on top 16 projections (q_proj, k_proj, v_proj) based on snr values. This model has been trained for 1080 steps.

馃弳 Evaluation results

Coming Soon

Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johnsnowlabs/PhiMerge-2.7B-Dare-daser"
messages = [{"role": "user", "content": "Explain what is Machine learning."}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-04
  • train_batch_size: 1
  • eval_batch_size: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: paged_adamw_32bit
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1080

LoRA Config

  • lora_r: 16
  • lora_alpha: 32
  • lora_dropout: 0.05
  • peft_use_dora: true

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.17.0
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
2.78B params
Tensor type
F32
FP16
I8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.