RichardErkhov commited on
Commit
763e534
·
verified ·
1 Parent(s): f5fabb4

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ PhiMerge-2.7B-Dare-daser - bnb 8bits
11
+ - Model creator: https://huggingface.co/johnsnowlabs/
12
+ - Original model: https://huggingface.co/johnsnowlabs/PhiMerge-2.7B-Dare-daser/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: cc-by-nc-4.0
20
+ base_model: Johnsnowlabs/PhiMerge-2.7B-Dare
21
+ tags:
22
+ - generated_from_trainer
23
+ - Phi
24
+ - axolotl
25
+ - instruct
26
+ - finetune
27
+ - chatml
28
+ - gpt4
29
+ - synthetic data
30
+ - distillation
31
+ model-index:
32
+ - name: PhiMerge-2.7B-Dare-daser
33
+ results: []
34
+ datasets:
35
+ - argilla/distilabel-capybara-dpo-7k-binarized
36
+ language:
37
+ - en
38
+ library_name: transformers
39
+ pipeline_tag: text-generation
40
+ ---
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # PhiMerge-2.7B-Dare-daser
45
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/660cfe98280a82e38fe4ef49/yToMeQHvr5CJPYxA5sdQc.png)
46
+
47
+ PhiMerge-2.7B-Dare-daser is a mixture of two techniques that are LaserQlora and Dora. This model is a DPO fine-tuned of [johnsnowlabs/PhiMerge-2.7B-Dare](https://huggingface.co/johnsnowlabs/PhiMerge-2.7B-Dare) using the [argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized) preference dataset. The model has been trained on top 16 projections (q_proj, k_proj, v_proj) based on snr values. This model has been trained for 1080 steps.
48
+
49
+ ## 🏆 Evaluation results
50
+
51
+ #### Coming Soon
52
+
53
+ ## Usage
54
+
55
+ ```python
56
+ !pip install -qU transformers accelerate
57
+
58
+ from transformers import AutoTokenizer
59
+ import transformers
60
+ import torch
61
+
62
+ model = "johnsnowlabs/PhiMerge-2.7B-Dare-daser"
63
+ messages = [{"role": "user", "content": "Explain what is Machine learning."}]
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained(model)
66
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
67
+ pipeline = transformers.pipeline(
68
+ "text-generation",
69
+ model=model,
70
+ torch_dtype=torch.float16,
71
+ device_map="auto",
72
+ )
73
+
74
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
75
+ print(outputs[0]["generated_text"])
76
+ ```
77
+
78
+
79
+ ### Training hyperparameters
80
+
81
+ The following hyperparameters were used during training:
82
+ - learning_rate: 2e-04
83
+ - train_batch_size: 1
84
+ - eval_batch_size: 8
85
+ - gradient_accumulation_steps: 8
86
+ - total_train_batch_size: 8
87
+ - optimizer: paged_adamw_32bit
88
+ - lr_scheduler_type: cosine
89
+ - lr_scheduler_warmup_steps: 100
90
+ - training_steps: 1080
91
+
92
+ ### LoRA Config
93
+ - lora_r: 16
94
+ - lora_alpha: 32
95
+ - lora_dropout: 0.05
96
+ - peft_use_dora: true
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.38.0.dev0
102
+ - Pytorch 2.1.2+cu118
103
+ - Datasets 2.17.0
104
+ - Tokenizers 0.15.0
105
+