Quantization made by Richard Erkhov.
bilingual-gpt-neox-4b-instruction-sft - bnb 4bits
- Model creator: https://huggingface.co/rinna/
- Original model: https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft/
Original model description:
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png license: mit datasets: - Anthropic/hh-rlhf language: - ja - en inference: false base_model: rinna/bilingual-gpt-neox-4b
bilingual-gpt-neox-4b-instruction-sft
Update
- 2023/08/02 We uploaded the newly trained
rinna/bilingual-gpt-neox-4b-instruction-sft
with the MIT license.- Please refrain from using the previous model released on 2023/07/31 for commercial purposes if you have already downloaded it.
- The new model released on 2023/08/02 is built from datasets with less strict licenses and has better evaluation performance, so we suggest using the new model.
- For reference, we provide the MD5 checksum values for the
pytorch_model.bin
files of the previous and current models.- 2023/07/31 model:
edf190a323c0ae63f71476700fb0b462
- 2023/08/02 model:
de72aa5b66beee7b65783c96f687d186
- 2023/07/31 model:
- 2023/07/31 In the previously released
rinna/bilingual-gpt-neox-4b-instruction-sft
, we found that part of the training data (i.e. Openchat ShareGPT4 and WizardLM) have a non-commercial license, and thus it does not comply with the MIT license. We decided to remove the previous version and build a new SFT model from datasets with less strict licenses. The new model will be uploaded in a few days. We sincerely apologize for our careless mistake.
Overview
This repository provides an English-Japanese bilingual GPT-NeoX model of 3.8 billion parameters.
The model is based on rinna/bilingual-gpt-neox-4b
and has been finetuned to serve as an instruction-following conversational agent.
Model architecture
A 36-layer, 2816-hidden-size transformer-based language model.
Fine-tuning
The fine-tuning data is the subset of the following datasets.
- Anthropic HH RLHF data and its Japanese translation
- FLAN Instruction Tuning data and its Japanese translation
Model Series
Variant Link Bilingual 4B MiniGPT4 https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4 Bilingual 4B PPO https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo Bilingual 4B SFT https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft Bilingual 4B 8K https://huggingface.co/rinna/bilingual-gpt-neox-4b-8k Bilingual 4B https://huggingface.co/rinna/bilingual-gpt-neox-4b Japanese 3.6B PPO https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo Japanese 3.6B SFT-v2 https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 Japanese 3.6B SFT https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft Japanese 3.6B https://huggingface.co/rinna/japanese-gpt-neox-3.6b Contributors
Benchmarking
Our evaluation experiments suggest that the bilingual-gpt-neox-4b-instruction-sft model performs slightly better than the previous Japanese GPT-NeoX 3.6B PPO in Japanese tasks.
- The 4-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, and JSQuAD.
- The 6-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, JSQuAD, XWinograd, and JAQKET-v2.
| Model | 4-task average accuracy | 6-task average accuracy |
| :-- | :-- | :-- |
| bilingual-gpt-neox-4b-instruction-ppo | 61.01 | 61.16 |
| bilingual-gpt-neox-4b-instruction-sft | 61.02 | 61.69 |
| bilingual-gpt-neox-4b | 56.12 | 51.83 |
| japanese-gpt-neox-3.6b-instruction-ppo | 59.86 | 60.07 |
| japanese-gpt-neox-3.6b | 55.07 | 50.32 |
I/O Format
A special format has been adopted to construct inputs.
- An input prompt is formatted as a conversation between
ユーザー
andシステム
. - Each input utterance consists of (1) its speaker (
"ユーザー"
or"システム"
), (2) a colon (":"
), (3) a whitespace (" "
), and (4) utterance text (e.g."世界で一番高い山は?"
). - The input prompt should be ended with
"システム: "
to acknowledge the model to generate a response. - All the utterances in the input prompt should be separated by a newline
\n
.
Following is an example to construct input from a conversation.
prompt = [
{
"speaker": "ユーザー",
"text": "Hello, you are an assistant that helps me learn Japanese."
},
{
"speaker": "システム",
"text": "Sure, what can I do for you?"
},
{
"speaker": "ユーザー",
"text": "VRはなんですか。"
}
]
prompt = [
f"{uttr['speaker']}: {uttr['text']}"
for uttr in prompt
]
prompt = "\n".join(prompt)
prompt = (
prompt
+ "\n"
+ "システム: "
)
print(prompt)
"""
ユーザー: Hello, you are an assistant that helps me learn Japanese.
システム: Sure, what can I do for you?
ユーザー: VRはなんですか。
システム:
"""
How to use the model
Notice: Since the model is sensitive to decoding hyper-parameters (e.g. temperature
, top_p
, top_k
, repetition_penalty
), it is suggested to explore the best setting for your task.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-sft", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-sft")
if torch.cuda.is_available():
model = model.to("cuda")
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=512,
do_sample=True,
temperature=1.0,
top_p=0.85,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
print(output)
"""VRとはVirtual Realityの略で、仮想現実とも呼ばれます。これは、コンピューターを使用して仮想世界を作り出し、仮想世界上でコンピューターのゲームや仮想世界を体験するための技術です。この技術は、コンピューターやモバイ ルデバイスの進歩によって、2015年以降、ますます普及しています。VRは、ゲームや仮想世界、その他のアプリケー ションなどのさまざまな分野で、コンピューターと人間の相互作用の新しい方法を提供しています。</s>"""
Tokenization
The model uses a sentencepiece-based tokenizer.
- The tokenizer has a vocabulary size of 65,536.
- It uses byte fallback to decompose unknown text pieces into UTF-8 byte pieces to avoid producing
<UNK>
tokens. - It can recognize consecutive whitespaces, newlines, and tabs to handle structured texts better.
- We turned off the default behaviour of prepending leading whitespace because it is not beneficial for processing Japanese.
- Specifically, single whitespace is always processed as one token so that any English word won't have a preceding whitespace like in many other tokenizers (e.g.
_Hello
).- This decision trades the English processing efficiency for a unified way to treat whitespaces.
- It leads to a significantly lower loss of next token prediction on English data because whitespaces are easy to predict.
- Don't forget to set
use_fast=False
to make the above features function correctly.
How to cite
@misc{rinna-bilingual-gpt-neox-4b-instruction-sft,
title = {rinna/bilingual-gpt-neox-4b-instruction-sft},
author = {Zhao, Tianyu and Sawada, Kei},
url = {https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
Licenese
- Downloads last month
- 2