|
--- |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
tags: |
|
- generated_from_trainer |
|
- GEITje |
|
- conversational |
|
model-index: |
|
- name: Mistral-7B-v0.1-chat-nl |
|
results: [] |
|
datasets: |
|
- Rijgersberg/no_robots_nl |
|
- Rijgersberg/ultrachat_10k_nl |
|
language: |
|
- nl |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7B-v0.1-chat-nl |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the Rijgersberg/no_robots_nl and Rijgersberg/ultrachat_10k_nl datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0263 |
|
|
|
## Model description |
|
In order to investigate the effect of pretraining [Rijgersberg/GEITje-7B](https://huggingface.co/Rijgersberg/GEITje-7B-chat) on the finetuning of [Rijgersberg/GEITje-7B-chat](https://huggingface.co/Rijgersberg/GEITje-7B-chat), |
|
I also subjected the base model Mistral 7B v0.1 to the exact same training. |
|
This model is called Mistral-7B-v0.1-chat-nl. |
|
|
|
## More info |
|
Read more about GEITje and GEITje-chat in the [๐ README](https://github.com/Rijgersberg/GEITje/blob/main/README-en.md) on GitHub. |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.2404 | 0.2 | 236 | 1.1166 | |
|
| 1.2103 | 0.4 | 472 | 1.1101 | |
|
| 1.0357 | 0.6 | 708 | 1.0739 | |
|
| 1.27 | 0.8 | 944 | 1.0540 | |
|
| 1.3557 | 1.0 | 1180 | 1.0330 | |
|
| 0.7919 | 1.2 | 1416 | 1.0368 | |
|
| 0.8701 | 1.4 | 1652 | 1.0193 | |
|
| 0.8851 | 1.6 | 1888 | 1.0009 | |
|
| 0.7562 | 1.8 | 2124 | 0.9791 | |
|
| 0.6838 | 2.0 | 2360 | 0.9823 | |
|
| 0.5011 | 2.2 | 2596 | 1.0271 | |
|
| 0.4495 | 2.39 | 2832 | 1.0267 | |
|
| 0.5625 | 2.59 | 3068 | 1.0250 | |
|
| 0.4486 | 2.79 | 3304 | 1.0262 | |
|
| 0.5706 | 2.99 | 3540 | 1.0263 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |