|
#ifndef YOLOV5_COMMON_H_ |
|
#define YOLOV5_COMMON_H_ |
|
|
|
#include <fstream> |
|
#include <map> |
|
#include <sstream> |
|
#include <vector> |
|
#include <opencv2/opencv.hpp> |
|
#include "NvInfer.h" |
|
#include "yololayer.h" |
|
|
|
using namespace nvinfer1; |
|
|
|
cv::Rect get_rect(cv::Mat& img, float bbox[4]) { |
|
int l, r, t, b; |
|
float r_w = Yolo::INPUT_W / (img.cols * 1.0); |
|
float r_h = Yolo::INPUT_H / (img.rows * 1.0); |
|
if (r_h > r_w) { |
|
l = bbox[0] - bbox[2] / 2.f; |
|
r = bbox[0] + bbox[2] / 2.f; |
|
t = bbox[1] - bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2; |
|
b = bbox[1] + bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2; |
|
l = l / r_w; |
|
r = r / r_w; |
|
t = t / r_w; |
|
b = b / r_w; |
|
} else { |
|
l = bbox[0] - bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2; |
|
r = bbox[0] + bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2; |
|
t = bbox[1] - bbox[3] / 2.f; |
|
b = bbox[1] + bbox[3] / 2.f; |
|
l = l / r_h; |
|
r = r / r_h; |
|
t = t / r_h; |
|
b = b / r_h; |
|
} |
|
return cv::Rect(l, t, r - l, b - t); |
|
} |
|
|
|
float iou(float lbox[4], float rbox[4]) { |
|
float interBox[] = { |
|
(std::max)(lbox[0] - lbox[2] / 2.f , rbox[0] - rbox[2] / 2.f), |
|
(std::min)(lbox[0] + lbox[2] / 2.f , rbox[0] + rbox[2] / 2.f), |
|
(std::max)(lbox[1] - lbox[3] / 2.f , rbox[1] - rbox[3] / 2.f), |
|
(std::min)(lbox[1] + lbox[3] / 2.f , rbox[1] + rbox[3] / 2.f), |
|
}; |
|
|
|
if (interBox[2] > interBox[3] || interBox[0] > interBox[1]) |
|
return 0.0f; |
|
|
|
float interBoxS = (interBox[1] - interBox[0])*(interBox[3] - interBox[2]); |
|
return interBoxS / (lbox[2] * lbox[3] + rbox[2] * rbox[3] - interBoxS); |
|
} |
|
|
|
bool cmp(const Yolo::Detection& a, const Yolo::Detection& b) { |
|
return a.conf > b.conf; |
|
} |
|
|
|
void nms(std::vector<Yolo::Detection>& res, float *output, float conf_thresh, float nms_thresh = 0.5) { |
|
int det_size = sizeof(Yolo::Detection) / sizeof(float); |
|
std::map<float, std::vector<Yolo::Detection>> m; |
|
for (int i = 0; i < output[0] && i < Yolo::MAX_OUTPUT_BBOX_COUNT; i++) { |
|
if (output[1 + det_size * i + 4] <= conf_thresh) continue; |
|
Yolo::Detection det; |
|
memcpy(&det, &output[1 + det_size * i], det_size * sizeof(float)); |
|
if (m.count(det.class_id) == 0) m.emplace(det.class_id, std::vector<Yolo::Detection>()); |
|
m[det.class_id].push_back(det); |
|
} |
|
for (auto it = m.begin(); it != m.end(); it++) { |
|
|
|
auto& dets = it->second; |
|
std::sort(dets.begin(), dets.end(), cmp); |
|
for (size_t m = 0; m < dets.size(); ++m) { |
|
auto& item = dets[m]; |
|
res.push_back(item); |
|
for (size_t n = m + 1; n < dets.size(); ++n) { |
|
if (iou(item.bbox, dets[n].bbox) > nms_thresh) { |
|
dets.erase(dets.begin() + n); |
|
--n; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
std::map<std::string, Weights> loadWeights(const std::string file) { |
|
std::cout << "Loading weights: " << file << std::endl; |
|
std::map<std::string, Weights> weightMap; |
|
|
|
|
|
std::ifstream input(file); |
|
assert(input.is_open() && "Unable to load weight file. please check if the .wts file path is right!!!!!!"); |
|
|
|
|
|
int32_t count; |
|
input >> count; |
|
assert(count > 0 && "Invalid weight map file."); |
|
|
|
while (count--) |
|
{ |
|
Weights wt{ DataType::kFLOAT, nullptr, 0 }; |
|
uint32_t size; |
|
|
|
|
|
std::string name; |
|
input >> name >> std::dec >> size; |
|
wt.type = DataType::kFLOAT; |
|
|
|
|
|
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size)); |
|
for (uint32_t x = 0, y = size; x < y; ++x) |
|
{ |
|
input >> std::hex >> val[x]; |
|
} |
|
wt.values = val; |
|
|
|
wt.count = size; |
|
weightMap[name] = wt; |
|
} |
|
|
|
return weightMap; |
|
} |
|
|
|
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) { |
|
float *gamma = (float*)weightMap[lname + ".weight"].values; |
|
float *beta = (float*)weightMap[lname + ".bias"].values; |
|
float *mean = (float*)weightMap[lname + ".running_mean"].values; |
|
float *var = (float*)weightMap[lname + ".running_var"].values; |
|
int len = weightMap[lname + ".running_var"].count; |
|
|
|
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len)); |
|
for (int i = 0; i < len; i++) { |
|
scval[i] = gamma[i] / sqrt(var[i] + eps); |
|
} |
|
Weights scale{ DataType::kFLOAT, scval, len }; |
|
|
|
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len)); |
|
for (int i = 0; i < len; i++) { |
|
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps); |
|
} |
|
Weights shift{ DataType::kFLOAT, shval, len }; |
|
|
|
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len)); |
|
for (int i = 0; i < len; i++) { |
|
pval[i] = 1.0; |
|
} |
|
Weights power{ DataType::kFLOAT, pval, len }; |
|
|
|
weightMap[lname + ".scale"] = scale; |
|
weightMap[lname + ".shift"] = shift; |
|
weightMap[lname + ".power"] = power; |
|
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power); |
|
assert(scale_1); |
|
return scale_1; |
|
} |
|
|
|
ILayer* convBlock(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int g, std::string lname) { |
|
Weights emptywts{ DataType::kFLOAT, nullptr, 0 }; |
|
int p = ksize / 2; |
|
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ ksize, ksize }, weightMap[lname + ".conv.weight"], emptywts); |
|
assert(conv1); |
|
conv1->setStrideNd(DimsHW{ s, s }); |
|
conv1->setPaddingNd(DimsHW{ p, p }); |
|
conv1->setNbGroups(g); |
|
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn", 1e-3); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto hsig = network->addActivation(*bn1->getOutput(0), ActivationType::kHARD_SIGMOID); |
|
assert(hsig); |
|
hsig->setAlpha(1.0 / 6.0); |
|
hsig->setBeta(0.5); |
|
auto ew = network->addElementWise(*bn1->getOutput(0), *hsig->getOutput(0), ElementWiseOperation::kPROD); |
|
assert(ew); |
|
return ew; |
|
} |
|
|
|
ILayer* focus(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int ksize, std::string lname) { |
|
ISliceLayer *s1 = network->addSlice(input, Dims3{ 0, 0, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 }); |
|
ISliceLayer *s2 = network->addSlice(input, Dims3{ 0, 1, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 }); |
|
ISliceLayer *s3 = network->addSlice(input, Dims3{ 0, 0, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 }); |
|
ISliceLayer *s4 = network->addSlice(input, Dims3{ 0, 1, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 }); |
|
ITensor* inputTensors[] = { s1->getOutput(0), s2->getOutput(0), s3->getOutput(0), s4->getOutput(0) }; |
|
auto cat = network->addConcatenation(inputTensors, 4); |
|
auto conv = convBlock(network, weightMap, *cat->getOutput(0), outch, ksize, 1, 1, lname + ".conv"); |
|
return conv; |
|
} |
|
|
|
ILayer* bottleneck(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, bool shortcut, int g, float e, std::string lname) { |
|
auto cv1 = convBlock(network, weightMap, input, (int)((float)c2 * e), 1, 1, 1, lname + ".cv1"); |
|
auto cv2 = convBlock(network, weightMap, *cv1->getOutput(0), c2, 3, 1, g, lname + ".cv2"); |
|
if (shortcut && c1 == c2) { |
|
auto ew = network->addElementWise(input, *cv2->getOutput(0), ElementWiseOperation::kSUM); |
|
return ew; |
|
} |
|
return cv2; |
|
} |
|
|
|
ILayer* bottleneckCSP(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) { |
|
Weights emptywts{ DataType::kFLOAT, nullptr, 0 }; |
|
int c_ = (int)((float)c2 * e); |
|
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1"); |
|
auto cv2 = network->addConvolutionNd(input, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv2.weight"], emptywts); |
|
ITensor *y1 = cv1->getOutput(0); |
|
for (int i = 0; i < n; i++) { |
|
auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i)); |
|
y1 = b->getOutput(0); |
|
} |
|
auto cv3 = network->addConvolutionNd(*y1, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv3.weight"], emptywts); |
|
|
|
ITensor* inputTensors[] = { cv3->getOutput(0), cv2->getOutput(0) }; |
|
auto cat = network->addConcatenation(inputTensors, 2); |
|
|
|
IScaleLayer* bn = addBatchNorm2d(network, weightMap, *cat->getOutput(0), lname + ".bn", 1e-4); |
|
auto lr = network->addActivation(*bn->getOutput(0), ActivationType::kLEAKY_RELU); |
|
lr->setAlpha(0.1); |
|
|
|
auto cv4 = convBlock(network, weightMap, *lr->getOutput(0), c2, 1, 1, 1, lname + ".cv4"); |
|
return cv4; |
|
} |
|
|
|
ILayer* C3(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) { |
|
int c_ = (int)((float)c2 * e); |
|
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1"); |
|
auto cv2 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv2"); |
|
ITensor *y1 = cv1->getOutput(0); |
|
for (int i = 0; i < n; i++) { |
|
auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i)); |
|
y1 = b->getOutput(0); |
|
} |
|
|
|
ITensor* inputTensors[] = { y1, cv2->getOutput(0) }; |
|
auto cat = network->addConcatenation(inputTensors, 2); |
|
|
|
auto cv3 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv3"); |
|
return cv3; |
|
} |
|
|
|
ILayer* SPP(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int k1, int k2, int k3, std::string lname) { |
|
int c_ = c1 / 2; |
|
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1"); |
|
|
|
auto pool1 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k1, k1 }); |
|
pool1->setPaddingNd(DimsHW{ k1 / 2, k1 / 2 }); |
|
pool1->setStrideNd(DimsHW{ 1, 1 }); |
|
auto pool2 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k2, k2 }); |
|
pool2->setPaddingNd(DimsHW{ k2 / 2, k2 / 2 }); |
|
pool2->setStrideNd(DimsHW{ 1, 1 }); |
|
auto pool3 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k3, k3 }); |
|
pool3->setPaddingNd(DimsHW{ k3 / 2, k3 / 2 }); |
|
pool3->setStrideNd(DimsHW{ 1, 1 }); |
|
|
|
ITensor* inputTensors[] = { cv1->getOutput(0), pool1->getOutput(0), pool2->getOutput(0), pool3->getOutput(0) }; |
|
auto cat = network->addConcatenation(inputTensors, 4); |
|
|
|
auto cv2 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv2"); |
|
return cv2; |
|
} |
|
|
|
ILayer* preprocess_layer(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input) { |
|
|
|
auto rescale = network->addResize(input); |
|
rescale->setOutputDimensions(Dims3{ 3, Yolo::IMG_H, Yolo::IMG_W }); |
|
rescale->setResizeMode(ResizeMode::kLINEAR); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto padding = network->addPaddingNd(*rescale->getOutput(0), |
|
DimsHW{ (Yolo::INPUT_H - Yolo::IMG_H) / 2, (Yolo::INPUT_W - Yolo::IMG_W) / 2 }, |
|
DimsHW{ (Yolo::INPUT_H - Yolo::IMG_H) / 2, (Yolo::INPUT_W - Yolo::IMG_W) / 2 }); |
|
|
|
assert(padding); |
|
return padding; |
|
|
|
} |
|
|
|
std::vector<float> getAnchors(std::map<std::string, Weights>& weightMap) |
|
{ |
|
std::vector<float> anchors_yolo; |
|
Weights Yolo_Anchors = weightMap["model.24.anchor_grid"]; |
|
assert(Yolo_Anchors.count == 18); |
|
int each_yololayer_anchorsnum = Yolo_Anchors.count / 3; |
|
const float* tempAnchors = (const float*)(Yolo_Anchors.values); |
|
for (int i = 0; i < Yolo_Anchors.count; i++) |
|
{ |
|
if (i < each_yololayer_anchorsnum) |
|
{ |
|
anchors_yolo.push_back(const_cast<float*>(tempAnchors)[i]); |
|
} |
|
if ((i >= each_yololayer_anchorsnum) && (i < (2 * each_yololayer_anchorsnum))) |
|
{ |
|
anchors_yolo.push_back(const_cast<float*>(tempAnchors)[i]); |
|
} |
|
if (i >= (2 * each_yololayer_anchorsnum)) |
|
{ |
|
anchors_yolo.push_back(const_cast<float*>(tempAnchors)[i]); |
|
} |
|
} |
|
|
|
return anchors_yolo; |
|
} |
|
|
|
IPluginV2Layer* addYoLoLayer(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, IConvolutionLayer* det0, IConvolutionLayer* det1, IConvolutionLayer* det2) |
|
{ |
|
auto creator = getPluginRegistry()->getPluginCreator("YoloLayer_TRT", "1"); |
|
std::vector<float> anchors_yolo = getAnchors(weightMap); |
|
PluginField pluginMultidata[4]; |
|
int NetData[4]; |
|
NetData[0] = Yolo::CLASS_NUM; |
|
NetData[1] = Yolo::INPUT_W; |
|
NetData[2] = Yolo::INPUT_H; |
|
NetData[3] = Yolo::MAX_OUTPUT_BBOX_COUNT; |
|
pluginMultidata[0].data = NetData; |
|
pluginMultidata[0].length = 3; |
|
pluginMultidata[0].name = "netdata"; |
|
pluginMultidata[0].type = PluginFieldType::kFLOAT32; |
|
int scale[3] = { 8, 16, 32 }; |
|
int plugindata[3][8]; |
|
std::string names[3]; |
|
for (int k = 1; k < 4; k++) |
|
{ |
|
plugindata[k - 1][0] = Yolo::INPUT_W / scale[k - 1]; |
|
plugindata[k - 1][1] = Yolo::INPUT_H / scale[k - 1]; |
|
for (int i = 2; i < 8; i++) |
|
{ |
|
plugindata[k - 1][i] = int(anchors_yolo[(k - 1) * 6 + i - 2]); |
|
} |
|
pluginMultidata[k].data = plugindata[k - 1]; |
|
pluginMultidata[k].length = 8; |
|
names[k - 1] = "yolodata" + std::to_string(k); |
|
pluginMultidata[k].name = names[k - 1].c_str(); |
|
pluginMultidata[k].type = PluginFieldType::kFLOAT32; |
|
} |
|
PluginFieldCollection pluginData; |
|
pluginData.nbFields = 4; |
|
pluginData.fields = pluginMultidata; |
|
IPluginV2 *pluginObj = creator->createPlugin("yololayer", &pluginData); |
|
ITensor* inputTensors_yolo[] = { det2->getOutput(0), det1->getOutput(0), det0->getOutput(0) }; |
|
auto yolo = network->addPluginV2(inputTensors_yolo, 3, *pluginObj); |
|
return yolo; |
|
} |
|
#endif |
|
|
|
|