|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasus-large-samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 48.0968 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-large-samsum |
|
|
|
This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4109 |
|
- Rouge1: 48.0968 |
|
- Rouge2: 24.6663 |
|
- Rougel: 40.2569 |
|
- Rougelsum: 44.0137 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| No log | 1.0 | 230 | 1.4646 | 45.0631 | 22.5567 | 38.0518 | 41.2694 | |
|
| No log | 2.0 | 460 | 1.4203 | 47.4122 | 24.158 | 39.7414 | 43.3485 | |
|
| 1.699 | 3.0 | 690 | 1.4109 | 48.0968 | 24.6663 | 40.2569 | 44.0137 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|