swinv2-tiny-patch4-window8-256-dmae-humeda-DAV68
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2868
- Accuracy: 0.9314
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0651 | 1.0 | 18 | 1.0769 | 0.4686 |
0.9503 | 2.0 | 36 | 0.8111 | 0.7257 |
0.5745 | 3.0 | 54 | 0.4972 | 0.7314 |
0.4746 | 4.0 | 72 | 0.4788 | 0.7486 |
0.4363 | 5.0 | 90 | 0.5427 | 0.7314 |
0.4362 | 6.0 | 108 | 0.3581 | 0.8686 |
0.3476 | 7.0 | 126 | 0.3572 | 0.8686 |
0.3113 | 8.0 | 144 | 0.4335 | 0.7886 |
0.3943 | 9.0 | 162 | 0.2782 | 0.8686 |
0.2574 | 10.0 | 180 | 0.3320 | 0.8686 |
0.2345 | 11.0 | 198 | 0.4383 | 0.8343 |
0.3002 | 12.0 | 216 | 0.3053 | 0.8686 |
0.2038 | 13.0 | 234 | 0.3189 | 0.8743 |
0.2244 | 14.0 | 252 | 0.2766 | 0.8743 |
0.2277 | 15.0 | 270 | 0.2637 | 0.8857 |
0.2318 | 16.0 | 288 | 0.4612 | 0.8114 |
0.1908 | 17.0 | 306 | 0.3167 | 0.8857 |
0.1932 | 18.0 | 324 | 0.2949 | 0.9029 |
0.1676 | 19.0 | 342 | 0.2627 | 0.9086 |
0.1442 | 20.0 | 360 | 0.2584 | 0.9143 |
0.1606 | 21.0 | 378 | 0.2626 | 0.9143 |
0.1624 | 22.0 | 396 | 0.2351 | 0.9257 |
0.1735 | 23.0 | 414 | 0.2746 | 0.9257 |
0.1604 | 24.0 | 432 | 0.3237 | 0.8914 |
0.122 | 25.0 | 450 | 0.2852 | 0.8914 |
0.1447 | 26.0 | 468 | 0.2594 | 0.92 |
0.1265 | 27.0 | 486 | 0.2857 | 0.9029 |
0.1265 | 28.0 | 504 | 0.3238 | 0.8743 |
0.122 | 29.0 | 522 | 0.3029 | 0.8857 |
0.0929 | 30.0 | 540 | 0.2936 | 0.9029 |
0.1276 | 31.0 | 558 | 0.2777 | 0.9143 |
0.1118 | 32.0 | 576 | 0.2812 | 0.9143 |
0.1058 | 33.0 | 594 | 0.2925 | 0.92 |
0.0824 | 34.0 | 612 | 0.3519 | 0.8914 |
0.1084 | 35.0 | 630 | 0.2847 | 0.92 |
0.1074 | 36.0 | 648 | 0.2735 | 0.9143 |
0.1415 | 37.0 | 666 | 0.2724 | 0.9257 |
0.0702 | 38.0 | 684 | 0.2873 | 0.92 |
0.0987 | 39.0 | 702 | 0.2924 | 0.92 |
0.0637 | 40.0 | 720 | 0.2868 | 0.9314 |
0.1183 | 41.0 | 738 | 0.2892 | 0.92 |
0.096 | 42.0 | 756 | 0.2910 | 0.9143 |
0.0719 | 42.5217 | 765 | 0.2897 | 0.9143 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV68
Base model
microsoft/swinv2-tiny-patch4-window8-256