|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: michiyasunaga/BioLinkBERT-base |
|
tags: |
|
- token-classification |
|
- generated_from_trainer |
|
datasets: |
|
- Rodrigo1771/drugtemist-en-fasttext-9-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: output |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Rodrigo1771/drugtemist-en-fasttext-9-ner |
|
type: Rodrigo1771/drugtemist-en-fasttext-9-ner |
|
config: DrugTEMIST English NER |
|
split: validation |
|
args: DrugTEMIST English NER |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9311627906976744 |
|
- name: Recall |
|
type: recall |
|
value: 0.9328984156570364 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9320297951582869 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.998772081600759 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# output |
|
|
|
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-9-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0071 |
|
- Precision: 0.9312 |
|
- Recall: 0.9329 |
|
- F1: 0.9320 |
|
- Accuracy: 0.9988 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9989 | 435 | 0.0060 | 0.8714 | 0.9217 | 0.8958 | 0.9981 | |
|
| 0.0156 | 2.0 | 871 | 0.0044 | 0.9183 | 0.9217 | 0.92 | 0.9987 | |
|
| 0.0038 | 2.9989 | 1306 | 0.0040 | 0.8969 | 0.9404 | 0.9181 | 0.9987 | |
|
| 0.0025 | 4.0 | 1742 | 0.0045 | 0.9078 | 0.9357 | 0.9215 | 0.9986 | |
|
| 0.0016 | 4.9989 | 2177 | 0.0054 | 0.9182 | 0.9096 | 0.9139 | 0.9986 | |
|
| 0.0011 | 6.0 | 2613 | 0.0053 | 0.9152 | 0.9254 | 0.9203 | 0.9986 | |
|
| 0.0009 | 6.9989 | 3048 | 0.0060 | 0.9263 | 0.9366 | 0.9314 | 0.9987 | |
|
| 0.0009 | 8.0 | 3484 | 0.0059 | 0.9181 | 0.9404 | 0.9291 | 0.9988 | |
|
| 0.0005 | 8.9989 | 3919 | 0.0067 | 0.9258 | 0.9301 | 0.9279 | 0.9988 | |
|
| 0.0003 | 9.9885 | 4350 | 0.0071 | 0.9312 | 0.9329 | 0.9320 | 0.9988 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|