See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-1.1-2b-it
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9af2fd9055cb835a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9af2fd9055cb835a_train_data.json
type:
field_instruction: qwq
field_output: problem
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/fcc25fb7-e3b9-4bed-a772-9a13d4deab2b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4800
micro_batch_size: 2
mlflow_experiment_name: /tmp/9af2fd9055cb835a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03779232362322565
wandb_entity: null
wandb_mode: online
wandb_name: 22e5cac2-fae3-415f-8da6-ea8f3470cabd
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 22e5cac2-fae3-415f-8da6-ea8f3470cabd
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
fcc25fb7-e3b9-4bed-a772-9a13d4deab2b
This model is a fine-tuned version of unsloth/gemma-1.1-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3834
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4800
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7728 | 0.0001 | 1 | 2.0024 |
0.8611 | 0.0094 | 150 | 0.5627 |
0.4826 | 0.0189 | 300 | 0.5481 |
0.7717 | 0.0283 | 450 | 0.5406 |
1.3571 | 0.0377 | 600 | 0.5391 |
0.259 | 0.0471 | 750 | 0.5271 |
0.4037 | 0.0566 | 900 | 0.5219 |
0.4962 | 0.0660 | 1050 | 0.5143 |
0.5318 | 0.0754 | 1200 | 0.5031 |
0.3864 | 0.0848 | 1350 | 0.5021 |
0.515 | 0.0943 | 1500 | 0.4971 |
0.7259 | 0.1037 | 1650 | 0.4935 |
0.4296 | 0.1131 | 1800 | 0.4826 |
0.3695 | 0.1225 | 1950 | 0.4723 |
0.2575 | 0.1320 | 2100 | 0.4713 |
0.3029 | 0.1414 | 2250 | 0.4518 |
0.6075 | 0.1508 | 2400 | 0.4520 |
0.4161 | 0.1602 | 2550 | 0.4426 |
0.3663 | 0.1697 | 2700 | 0.4317 |
0.3306 | 0.1791 | 2850 | 0.4274 |
0.5435 | 0.1885 | 3000 | 0.4203 |
0.5373 | 0.1980 | 3150 | 0.4147 |
0.3287 | 0.2074 | 3300 | 0.4095 |
0.4146 | 0.2168 | 3450 | 0.4042 |
0.3707 | 0.2262 | 3600 | 0.3983 |
0.4137 | 0.2357 | 3750 | 0.3942 |
0.4442 | 0.2451 | 3900 | 0.3908 |
0.4156 | 0.2545 | 4050 | 0.3884 |
0.3788 | 0.2639 | 4200 | 0.3861 |
0.4384 | 0.2734 | 4350 | 0.3843 |
0.2666 | 0.2828 | 4500 | 0.3837 |
0.2423 | 0.2922 | 4650 | 0.3834 |
0.3595 | 0.3016 | 4800 | 0.3834 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Romain-XV/fcc25fb7-e3b9-4bed-a772-9a13d4deab2b
Base model
unsloth/gemma-1.1-2b-it