RomainDarous's picture
Add new SentenceTransformer model
c3fb130 verified
metadata
language:
  - de
  - en
  - es
  - fr
  - it
  - nl
  - pl
  - pt
  - ru
  - zh
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:51741
  - loss:CoSENTLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
  - source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
    sentences:
      - Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
      - Grupa starszych osób pozuje wokół stołu w jadalni.
      - Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
  - source_sentence: >-
      Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
      und in der Gastfreundschaft und im Tourismusgeschäft.
    sentences:
      - >-
        Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh
        herumgereist, und ich hatte kein Problem damit, nur mit Englisch
        auszukommen.
      - >-
        Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn,
        glaube ich, κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr;
        Vokativform: κύριε).
      - Das Paar lag auf dem Bett.
  - source_sentence: >-
      Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup plus
      de chances de gagner n'importe quelle bataille.
    sentences:
      - >-
        Outre les probabilités de gagner une bataille théorique, cette citation
        a une autre signification : l'importance de connaître/comprendre les
        autres.
      - Une femme et un chien se promènent ensemble.
      - Un homme joue de la guitare.
  - source_sentence: Un homme joue de la harpe.
    sentences:
      - Une femme joue de la guitare.
      - une femme a un enfant.
      - Un groupe de personnes est debout et assis sur le sol la nuit.
  - source_sentence: Dois cães a lutar na neve.
    sentences:
      - Dois cães brincam na neve.
      - Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
      - Um gato está a caminhar sobre chão de madeira dura.
datasets:
  - PhilipMay/stsb_multi_mt
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-mpnet-base-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts eval
          type: sts-eval
        metrics:
          - type: pearson_cosine
            value: 0.8253368468984889
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.846759233048935
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8299744736557623
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8520861599655403
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8256016069231242
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8492129628424273
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8255197501712864
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8487854416277784
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8260573564720586
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8478611313629719
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8254630619077544
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8478863939561875
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8252961253716439
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8499454503012575
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8239479448794885
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8442906623766797
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8278545449307315
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8527526772189048
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.7359219780078147
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7333779772204967
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.6902858725875743
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6846586782470231
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.7678591853836273
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7639074219836824
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8169782930257612
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8177729106856704
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.6833019591754349
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6919928881318896
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.7631519370867645
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7647963195113389
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.8258066541444342
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8190422019612702
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.7539006536391688
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7554299404462984
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.7696930212849677
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7667219735306458
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.7616719432466488
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7669487674957793
            name: Spearman Cosine

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the multi_stsb_de, multi_stsb_es, multi_stsb_fr, multi_stsb_it, multi_stsb_nl, multi_stsb_pl, multi_stsb_pt, multi_stsb_ru and multi_stsb_zh datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): MultiHeadGeneralizedPooling()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/large_directFourEpoch_maxPooling_stsModel")
# Run inference
sentences = [
    'Dois cães a lutar na neve.',
    'Dois cães brincam na neve.',
    'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

  • Datasets: sts-eval, sts-test, sts-test, sts-test, sts-test, sts-test, sts-test, sts-test, sts-test, sts-test and sts-test
  • Evaluated with EmbeddingSimilarityEvaluator
Metric sts-eval sts-test
pearson_cosine 0.8253 0.7617
spearman_cosine 0.8468 0.7669

Semantic Similarity

Metric Value
pearson_cosine 0.83
spearman_cosine 0.8521

Semantic Similarity

Metric Value
pearson_cosine 0.8256
spearman_cosine 0.8492

Semantic Similarity

Metric Value
pearson_cosine 0.8255
spearman_cosine 0.8488

Semantic Similarity

Metric Value
pearson_cosine 0.8261
spearman_cosine 0.8479

Semantic Similarity

Metric Value
pearson_cosine 0.8255
spearman_cosine 0.8479

Semantic Similarity

Metric Value
pearson_cosine 0.8253
spearman_cosine 0.8499

Semantic Similarity

Metric Value
pearson_cosine 0.8239
spearman_cosine 0.8443

Semantic Similarity

Metric Value
pearson_cosine 0.8279
spearman_cosine 0.8528

Training Details

Training Datasets

multi_stsb_de

multi_stsb_de

  • Dataset: multi_stsb_de at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 11.58 tokens
    • max: 37 tokens
    • min: 6 tokens
    • mean: 11.53 tokens
    • max: 36 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Ein Flugzeug hebt gerade ab. Ein Flugzeug hebt gerade ab. 1.0
    Ein Mann spielt eine große Flöte. Ein Mann spielt eine Flöte. 0.7599999904632568
    Ein Mann streicht geriebenen Käse auf eine Pizza. Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza. 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_es

multi_stsb_es

  • Dataset: multi_stsb_es at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 12.21 tokens
    • max: 33 tokens
    • min: 7 tokens
    • mean: 12.07 tokens
    • max: 31 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Un avión está despegando. Un avión está despegando. 1.0
    Un hombre está tocando una gran flauta. Un hombre está tocando una flauta. 0.7599999904632568
    Un hombre está untando queso rallado en una pizza. Un hombre está untando queso rallado en una pizza cruda. 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_fr

multi_stsb_fr

  • Dataset: multi_stsb_fr at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 12.6 tokens
    • max: 33 tokens
    • min: 6 tokens
    • mean: 12.49 tokens
    • max: 32 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Un avion est en train de décoller. Un avion est en train de décoller. 1.0
    Un homme joue d'une grande flûte. Un homme joue de la flûte. 0.7599999904632568
    Un homme étale du fromage râpé sur une pizza. Un homme étale du fromage râpé sur une pizza non cuite. 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_it

multi_stsb_it

  • Dataset: multi_stsb_it at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 12.77 tokens
    • max: 36 tokens
    • min: 8 tokens
    • mean: 12.69 tokens
    • max: 30 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Un aereo sta decollando. Un aereo sta decollando. 1.0
    Un uomo sta suonando un grande flauto. Un uomo sta suonando un flauto. 0.7599999904632568
    Un uomo sta spalmando del formaggio a pezzetti su una pizza. Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta. 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_nl

multi_stsb_nl

  • Dataset: multi_stsb_nl at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 11.67 tokens
    • max: 33 tokens
    • min: 6 tokens
    • mean: 11.55 tokens
    • max: 29 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Er gaat een vliegtuig opstijgen. Er gaat een vliegtuig opstijgen. 1.0
    Een man speelt een grote fluit. Een man speelt fluit. 0.7599999904632568
    Een man smeert geraspte kaas op een pizza. Een man strooit geraspte kaas op een ongekookte pizza. 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_pl

multi_stsb_pl

  • Dataset: multi_stsb_pl at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 12.2 tokens
    • max: 39 tokens
    • min: 5 tokens
    • mean: 12.11 tokens
    • max: 35 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Samolot wystartował. Samolot wystartował. 1.0
    Człowiek gra na dużym flecie. Człowiek gra na flecie. 0.7599999904632568
    Mężczyzna rozsiewa na pizzy rozdrobniony ser. Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy. 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_pt

multi_stsb_pt

  • Dataset: multi_stsb_pt at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 12.33 tokens
    • max: 34 tokens
    • min: 7 tokens
    • mean: 12.29 tokens
    • max: 32 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Um avião está a descolar. Um avião aéreo está a descolar. 1.0
    Um homem está a tocar uma grande flauta. Um homem está a tocar uma flauta. 0.7599999904632568
    Um homem está a espalhar queijo desfiado numa pizza. Um homem está a espalhar queijo desfiado sobre uma pizza não cozida. 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_ru

multi_stsb_ru

  • Dataset: multi_stsb_ru at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 11.19 tokens
    • max: 39 tokens
    • min: 5 tokens
    • mean: 11.17 tokens
    • max: 26 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Самолет взлетает. Взлетает самолет. 1.0
    Человек играет на большой флейте. Человек играет на флейте. 0.7599999904632568
    Мужчина разбрасывает сыр на пиццу. Мужчина разбрасывает измельченный сыр на вареную пиццу. 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_zh

multi_stsb_zh

  • Dataset: multi_stsb_zh at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 10.7 tokens
    • max: 32 tokens
    • min: 7 tokens
    • mean: 10.79 tokens
    • max: 26 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    一架飞机正在起飞。 一架飞机正在起飞。 1.0
    一个男人正在吹一支大笛子。 一个人在吹笛子。 0.7599999904632568
    一名男子正在比萨饼上涂抹奶酪丝。 一名男子正在将奶酪丝涂抹在未熟的披萨上。 0.7599999904632568
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Datasets

multi_stsb_de

multi_stsb_de

  • Dataset: multi_stsb_de at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 18.25 tokens
    • max: 47 tokens
    • min: 6 tokens
    • mean: 18.25 tokens
    • max: 54 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Ein Mann mit einem Schutzhelm tanzt. Ein Mann mit einem Schutzhelm tanzt. 1.0
    Ein kleines Kind reitet auf einem Pferd. Ein Kind reitet auf einem Pferd. 0.949999988079071
    Ein Mann verfüttert eine Maus an eine Schlange. Der Mann füttert die Schlange mit einer Maus. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_es

multi_stsb_es

  • Dataset: multi_stsb_es at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 17.98 tokens
    • max: 47 tokens
    • min: 7 tokens
    • mean: 17.86 tokens
    • max: 47 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Un hombre con un casco está bailando. Un hombre con un casco está bailando. 1.0
    Un niño pequeño está montando a caballo. Un niño está montando a caballo. 0.949999988079071
    Un hombre está alimentando a una serpiente con un ratón. El hombre está alimentando a la serpiente con un ratón. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_fr

multi_stsb_fr

  • Dataset: multi_stsb_fr at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 19.7 tokens
    • max: 49 tokens
    • min: 6 tokens
    • mean: 19.65 tokens
    • max: 51 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Un homme avec un casque de sécurité est en train de danser. Un homme portant un casque de sécurité est en train de danser. 1.0
    Un jeune enfant monte à cheval. Un enfant monte à cheval. 0.949999988079071
    Un homme donne une souris à un serpent. L'homme donne une souris au serpent. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_it

multi_stsb_it

  • Dataset: multi_stsb_it at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 18.42 tokens
    • max: 46 tokens
    • min: 8 tokens
    • mean: 18.43 tokens
    • max: 53 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Un uomo con l'elmetto sta ballando. Un uomo che indossa un elmetto sta ballando. 1.0
    Un bambino piccolo sta cavalcando un cavallo. Un bambino sta cavalcando un cavallo. 0.949999988079071
    Un uomo sta dando da mangiare un topo a un serpente. L'uomo sta dando da mangiare un topo al serpente. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_nl

multi_stsb_nl

  • Dataset: multi_stsb_nl at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 17.88 tokens
    • max: 50 tokens
    • min: 6 tokens
    • mean: 17.71 tokens
    • max: 51 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Een man met een helm is aan het dansen. Een man met een helm is aan het dansen. 1.0
    Een jong kind rijdt op een paard. Een kind rijdt op een paard. 0.949999988079071
    Een man voedt een muis aan een slang. De man voert een muis aan de slang. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_pl

multi_stsb_pl

  • Dataset: multi_stsb_pl at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 18.54 tokens
    • max: 46 tokens
    • min: 6 tokens
    • mean: 18.43 tokens
    • max: 54 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Tańczy mężczyzna w twardym kapeluszu. Tańczy mężczyzna w twardym kapeluszu. 1.0
    Małe dziecko jedzie na koniu. Dziecko jedzie na koniu. 0.949999988079071
    Człowiek karmi węża myszką. Ten człowiek karmi węża myszką. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_pt

multi_stsb_pt

  • Dataset: multi_stsb_pt at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 18.22 tokens
    • max: 46 tokens
    • min: 7 tokens
    • mean: 18.11 tokens
    • max: 46 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Um homem de chapéu duro está a dançar. Um homem com um capacete está a dançar. 1.0
    Uma criança pequena está a montar a cavalo. Uma criança está a montar a cavalo. 0.949999988079071
    Um homem está a alimentar um rato a uma cobra. O homem está a alimentar a cobra com um rato. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_ru

multi_stsb_ru

  • Dataset: multi_stsb_ru at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 17.92 tokens
    • max: 49 tokens
    • min: 5 tokens
    • mean: 17.75 tokens
    • max: 47 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Человек в твердой шляпе танцует. Мужчина в твердой шляпе танцует. 1.0
    Маленький ребенок едет верхом на лошади. Ребенок едет на лошади. 0.949999988079071
    Мужчина кормит мышь змее. Человек кормит змею мышью. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    
multi_stsb_zh

multi_stsb_zh

  • Dataset: multi_stsb_zh at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 15.37 tokens
    • max: 46 tokens
    • min: 5 tokens
    • mean: 15.24 tokens
    • max: 46 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    一个戴着硬帽子的人在跳舞。 一个戴着硬帽的人在跳舞。 1.0
    一个小孩子在骑马。 一个孩子在骑马。 0.949999988079071
    一个人正在用老鼠喂蛇。 那人正在给蛇喂老鼠。 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss multi stsb de loss multi stsb es loss multi stsb fr loss multi stsb it loss multi stsb nl loss multi stsb pl loss multi stsb pt loss multi stsb ru loss multi stsb zh loss sts-eval_spearman_cosine sts-test_spearman_cosine
4.0 12960 3.6699 6.7790 6.7773 6.8239 6.9079 6.9186 6.7028 6.7280 6.7424 6.4329 0.8528 -
-1 -1 - - - - - - - - - - - 0.7669

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 1.3.0
  • Datasets: 2.16.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}