PhishLang_PhoBERTCNN_10k

This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3681
  • Accuracy: 0.9075
  • F1: 0.9064
  • Precision: 0.9103
  • Recall: 0.9044

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6931 0.8 100 0.4079 0.8915 0.8893 0.9001 0.8859
0.6931 1.6 200 0.3679 0.9055 0.9041 0.9102 0.9015
0.4782 2.4 300 0.3651 0.9015 0.9004 0.9032 0.8989
0.4782 3.2 400 0.3533 0.908 0.9070 0.9101 0.9052
0.3495 4.0 500 0.3650 0.9085 0.9068 0.9160 0.9036
0.3495 4.8 600 0.3562 0.9115 0.9102 0.9164 0.9075
0.3495 5.6 700 0.3595 0.905 0.9042 0.9052 0.9035
0.3147 6.4 800 0.3666 0.902 0.9013 0.9018 0.9009
0.3147 7.2 900 0.3666 0.911 0.9097 0.9154 0.9072
0.2962 8.0 1000 0.3618 0.908 0.9070 0.9097 0.9055
0.2962 8.8 1100 0.3680 0.9095 0.9083 0.9127 0.9062
0.2962 9.6 1200 0.3681 0.9075 0.9064 0.9103 0.9044

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for RonTon05/PhishLang_PhoBERTCNN_10k

Finetuned
(200)
this model