distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3644
- Accuracy: {'accuracy': 0.858}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3793 | {'accuracy': 0.856} |
0.435 | 2.0 | 500 | 0.5190 | {'accuracy': 0.858} |
0.435 | 3.0 | 750 | 0.8326 | {'accuracy': 0.857} |
0.2005 | 4.0 | 1000 | 0.9137 | {'accuracy': 0.856} |
0.2005 | 5.0 | 1250 | 1.0362 | {'accuracy': 0.862} |
0.0827 | 6.0 | 1500 | 1.2331 | {'accuracy': 0.852} |
0.0827 | 7.0 | 1750 | 1.2110 | {'accuracy': 0.856} |
0.033 | 8.0 | 2000 | 1.2963 | {'accuracy': 0.864} |
0.033 | 9.0 | 2250 | 1.3438 | {'accuracy': 0.863} |
0.0128 | 10.0 | 2500 | 1.3644 | {'accuracy': 0.858} |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.0
- Pytorch 2.1.1+cpu
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 8
Model tree for Ruchita-debug/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased