Ryukijano's picture
Update README.md
f4e12b3
|
raw
history blame
1.88 kB
metadata
license: mit
tags:
  - generated_from_trainer
  - text-to-speech
datasets:
  - voxpopuli
model-index:
  - name: speecht5_finetuned_voxpopuli_Nederlands
    results: []

speecht5_finetuned_voxpopuli_Nederlands

This model is a fine-tuned version of microsoft/speecht5_tts on the voxpopuli dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

from transformers import Seq2SeqTrainer

trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=dataset["train"], eval_dataset=dataset["test"], data_collator=data_collator, tokenizer=processor, )

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
0.6266 1.72 100 0.5448
0.5533 3.44 200 0.5040
0.5401 5.16 300 0.4930
0.535 6.88 400 0.4898
0.5331 8.6 500 0.4888

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3