Ryukijano's picture
Update README.md
f4e12b3
---
license: mit
tags:
- generated_from_trainer
- text-to-speech
datasets:
- voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_Nederlands
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_Nederlands
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4888
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
from transformers import Seq2SeqTrainer
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
data_collator=data_collator,
tokenizer=processor,
)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6266 | 1.72 | 100 | 0.5448 |
| 0.5533 | 3.44 | 200 | 0.5040 |
| 0.5401 | 5.16 | 300 | 0.4930 |
| 0.535 | 6.88 | 400 | 0.4898 |
| 0.5331 | 8.6 | 500 | 0.4888 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3