Quantize-Calibration-int8 / quantize_int8_test.py
Bethie's picture
Upload code quantize int8 ONNX weight.
745d42a verified
import os
import torch
import onnx
from pathlib import Path
from diffusers import DiffusionPipeline, StableDiffusionPipeline
import torch
from utilities import load_calib_prompts
from utilities import get_smoothquant_config
import ammo.torch.quantization as atq
import ammo.torch.opt as ato
from utilities import filter_func, quantize_lvl
# pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
# torch_dtype=torch.float16,
# use_safetensors=True,
# variant="fp16")
pipeline = StableDiffusionPipeline.from_pretrained("wyyadd/sd-1.5", torch_dtype=torch.float16)
pipeline.to("cuda")
# pipeline.enable_xformers_memory_efficient_attention()
# pipeline.enable_vae_slicing()
BATCH_SIZE = 4
cali_prompts = load_calib_prompts(batch_size=BATCH_SIZE, calib_data_path="./calibration-prompts.txt")
quant_config = get_smoothquant_config(pipeline.unet, quant_level=3.0)
def do_calibrate(base, calibration_prompts, **kwargs):
for i_th, prompts in enumerate(calibration_prompts):
print(prompts)
if i_th >= kwargs["calib_size"]:
return
base(
prompt=prompts,
num_inference_steps=kwargs["n_steps"],
negative_prompt=[
"normal quality, low quality, worst quality, low res, blurry, nsfw, nude"
]
* len(prompts),
).images
def calibration_loop():
do_calibrate(
base=pipeline,
calibration_prompts=cali_prompts,
calib_size=384,
n_steps=50,
)
quantized_model = atq.quantize(pipeline.unet, quant_config, forward_loop = calibration_loop)
ato.save(quantized_model, 'base.unet15_2.int8.pt')
quantize_lvl(quantized_model, quant_level=3.0)
atq.disable_quantizer(quantized_model, filter_func)
device1 = "cpu"
quantized_model = quantized_model.to(torch.float32).to(device1)
#Export model
sample = torch.randn((1, 4, 128, 128), dtype=torch.float32, device=device1)
timestep = torch.rand(1, dtype=torch.float32, device=device1)
encoder_hidden_state = torch.randn((1, 77, 768), dtype=torch.float32, device=device1)
import onnx
from pathlib import Path
output_path = Path('/home/tiennv/trang/Convert-_Unet_int8_Rebuild/Diffusion/onnx_unet15')
output_path.mkdir(parents=True, exist_ok=True)
dummy_inputs = (sample, timestep, encoder_hidden_state)
onnx_output_path = output_path / "unet" / "model.onnx"
onnx_output_path.parent.mkdir(parents=True, exist_ok=True)
# to cpu to export onnx
# from onnx_utils import ammo_export_sd
# base.unet.to(torch.float32).to("cpu")
# ammo_export_sd(base, 'onnx_dir', 'stabilityai/stable-diffusion-xl-base-1.0')
torch.onnx.export(
quantized_model,
dummy_inputs,
str(onnx_output_path),
export_params=True,
opset_version=18,
do_constant_folding=True,
input_names=['sample', 'timestep', 'encoder_hidden_state'],
output_names=['predict_noise'],
dynamic_axes={
"sample": {0: "B", 2: "W", 3: 'H'},
"encoder_hidden_state": {0: "B", 1: "S", 2: 'D'},
"predict_noise": {0: 'B', 2: "W", 3: 'H'}
}
)
# Tối ưu hóa và lưu mô hình ONNX
unet_opt_graph = onnx.load(str(onnx_output_path))
unet_optimize_path = output_path / "unet_optimize"
unet_optimize_path.mkdir(parents=True, exist_ok=True)
unet_optimize_file = unet_optimize_path / "model.onnx"
onnx.save_model(
unet_opt_graph,
str(unet_optimize_file),
save_as_external_data=True,
all_tensors_to_one_file=True,
location="weights.pb",
)