Bethie's picture
Upload code quantize int8 ONNX weight.
a63a2f3 verified
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
from cuda import cudart
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.utils.torch_utils import randn_tensor
from enum import Enum, auto
import gc
from io import BytesIO
import numpy as np
import onnx
from onnx import numpy_helper
import onnx_graphsurgeon as gs
import os
from PIL import Image
from polygraphy.backend.common import bytes_from_path
from polygraphy.backend.trt import (
CreateConfig,
ModifyNetworkOutputs,
Profile,
engine_from_bytes,
engine_from_network,
network_from_onnx_path,
save_engine
)
import random
import re
import requests
from scipy import integrate
import tensorrt as trt
import torch
import types
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
# Map of numpy dtype -> torch dtype
numpy_to_torch_dtype_dict = {
np.uint8 : torch.uint8,
np.int8 : torch.int8,
np.int16 : torch.int16,
np.int32 : torch.int32,
np.int64 : torch.int64,
np.float16 : torch.float16,
np.float32 : torch.float32,
np.float64 : torch.float64,
np.complex64 : torch.complex64,
np.complex128 : torch.complex128
}
if np.version.full_version >= "1.24.0":
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
numpy_to_torch_dtype_dict[np.bool] = torch.bool
# Map of torch dtype -> numpy dtype
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
def unload_model(model):
if model:
del model
torch.cuda.empty_cache()
gc.collect()
def replace_lora_layers(model):
def lora_forward(self, x, scale=None):
return self._torch_forward(x)
for name, module in model.named_modules():
if isinstance(module, LoRACompatibleConv):
in_channels = module.in_channels
out_channels = module.out_channels
kernel_size = module.kernel_size
stride = module.stride
padding = module.padding
dilation = module.dilation
groups = module.groups
bias = module.bias
new_conv = torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias is not None,
)
new_conv.weight.data = module.weight.data.clone().to(module.weight.data.device)
if bias is not None:
new_conv.bias.data = module.bias.data.clone().to(module.bias.data.device)
# Replace the LoRACompatibleConv layer with the Conv2d layer
path = name.split(".")
sub_module = model
for p in path[:-1]:
sub_module = getattr(sub_module, p)
setattr(sub_module, path[-1], new_conv)
new_conv._torch_forward = new_conv.forward
new_conv.forward = types.MethodType(lora_forward, new_conv)
elif isinstance(module, LoRACompatibleLinear):
in_features = module.in_features
out_features = module.out_features
bias = module.bias
new_linear = torch.nn.Linear(in_features, out_features, bias=bias is not None)
new_linear.weight.data = module.weight.data.clone().to(module.weight.data.device)
if bias is not None:
new_linear.bias.data = module.bias.data.clone().to(module.bias.data.device)
# Replace the LoRACompatibleLinear layer with the Linear layer
path = name.split(".")
sub_module = model
for p in path[:-1]:
sub_module = getattr(sub_module, p)
setattr(sub_module, path[-1], new_linear)
new_linear._torch_forward = new_linear.forward
new_linear.forward = types.MethodType(lora_forward, new_linear)
def merge_loras(model, lora_dict, lora_alphas, lora_scales):
assert len(lora_scales) == len(lora_dict)
for path, lora in lora_dict.items():
print(f"[I] Fusing LoRA: {path}, scale {lora_scales[path]}")
model.load_attn_procs(lora, network_alphas=lora_alphas[path])
model.fuse_lora(lora_scale=lora_scales[path])
return model
def CUASSERT(cuda_ret):
err = cuda_ret[0]
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError(f"CUDA ERROR: {err}, error code reference: https://nvidia.github.io/cuda-python/module/cudart.html#cuda.cudart.cudaError_t")
if len(cuda_ret) > 1:
return cuda_ret[1]
return None
class PIPELINE_TYPE(Enum):
TXT2IMG = auto()
IMG2IMG = auto()
INPAINT = auto()
CONTROLNET = auto()
XL_BASE = auto()
XL_REFINER = auto()
def is_txt2img(self):
return self == self.TXT2IMG
def is_img2img(self):
return self == self.IMG2IMG
def is_inpaint(self):
return self == self.INPAINT
def is_controlnet(self):
return self == self.CONTROLNET
def is_sd_xl_base(self):
return self == self.XL_BASE
def is_sd_xl_refiner(self):
return self == self.XL_REFINER
def is_sd_xl(self):
return self.is_sd_xl_base() or self.is_sd_xl_refiner()
class Engine():
def __init__(
self,
engine_path,
):
self.engine_path = engine_path
self.engine = None
self.context = None
self.buffers = OrderedDict()
self.tensors = OrderedDict()
self.cuda_graph_instance = None # cuda graph
def __del__(self):
del self.engine
del self.context
del self.buffers
del self.tensors
def refit(self, refit_weights, is_fp16):
# Initialize refitter
refitter = trt.Refitter(self.engine, TRT_LOGGER)
refitted_weights = set()
# iterate through all tensorrt refittable weights
for trt_weight_name in refitter.get_all_weights():
if trt_weight_name not in refit_weights:
continue
# get weight from state dict
trt_datatype = trt.DataType.FLOAT
if is_fp16:
refit_weights[trt_weight_name] = refit_weights[trt_weight_name].half()
trt_datatype = trt.DataType.HALF
# trt.Weight and trt.TensorLocation
trt_wt_tensor = trt.Weights(trt_datatype, refit_weights[trt_weight_name].data_ptr(), torch.numel(refit_weights[trt_weight_name]))
trt_wt_location = trt.TensorLocation.DEVICE if refit_weights[trt_weight_name].is_cuda else trt.TensorLocation.HOST
# apply refit
refitter.set_named_weights(trt_weight_name, trt_wt_tensor, trt_wt_location)
refitted_weights.add(trt_weight_name)
assert set(refitted_weights) == set(refit_weights.keys())
if not refitter.refit_cuda_engine():
print("Error: failed to refit new weights.")
exit(0)
print(f"[I] Total refitted weights {len(refitted_weights)}.")
def build(self,
onnx_path,
fp16=True,
tf32=False,
int8=False,
input_profile=None,
enable_refit=False,
enable_all_tactics=False,
timing_cache=None,
update_output_names=None,
**extra_build_args
):
print(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
p = Profile()
if input_profile:
for name, dims in input_profile.items():
assert len(dims) == 3
p.add(name, min=dims[0], opt=dims[1], max=dims[2])
if not enable_all_tactics:
extra_build_args['tactic_sources'] = []
network = network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM])
if update_output_names:
print(f"Updating network outputs to {update_output_names}")
network = ModifyNetworkOutputs(network, update_output_names)
engine = engine_from_network(
network,
config=CreateConfig(fp16=fp16,
tf32=tf32,
int8=int8,
refittable=enable_refit,
profiles=[p],
load_timing_cache=timing_cache,
**extra_build_args
),
save_timing_cache=timing_cache
)
save_engine(engine, path=self.engine_path)
def load(self):
print(f"Loading TensorRT engine: {self.engine_path}")
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
def activate(self, reuse_device_memory=None):
if reuse_device_memory:
self.context = self.engine.create_execution_context_without_device_memory()
self.context.device_memory = reuse_device_memory
else:
self.context = self.engine.create_execution_context()
def allocate_buffers(self, shape_dict=None, device='cuda'):
for idx in range(self.engine.num_io_tensors):
binding = self.engine[idx]
if shape_dict and binding in shape_dict:
shape = shape_dict[binding]
else:
shape = self.engine.get_binding_shape(binding)
dtype = trt.nptype(self.engine.get_binding_dtype(binding))
if self.engine.binding_is_input(binding):
self.context.set_binding_shape(idx, shape)
tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device)
self.tensors[binding] = tensor
def infer(self, feed_dict, stream, use_cuda_graph=False):
for name, buf in feed_dict.items():
self.tensors[name].copy_(buf)
for name, tensor in self.tensors.items():
self.context.set_tensor_address(name, tensor.data_ptr())
if use_cuda_graph:
if self.cuda_graph_instance is not None:
CUASSERT(cudart.cudaGraphLaunch(self.cuda_graph_instance, stream))
CUASSERT(cudart.cudaStreamSynchronize(stream))
else:
# do inference before CUDA graph capture
noerror = self.context.execute_async_v3(stream)
if not noerror:
raise ValueError(f"ERROR: inference failed.")
# capture cuda graph
CUASSERT(cudart.cudaStreamBeginCapture(stream, cudart.cudaStreamCaptureMode.cudaStreamCaptureModeGlobal))
self.context.execute_async_v3(stream)
self.graph = CUASSERT(cudart.cudaStreamEndCapture(stream))
self.cuda_graph_instance = CUASSERT(cudart.cudaGraphInstantiate(self.graph, 0))
else:
noerror = self.context.execute_async_v3(stream)
if not noerror:
raise ValueError(f"ERROR: inference failed.")
return self.tensors
def save_image(images, image_path_dir, image_name_prefix):
"""
Save the generated images to png files.
"""
images = ((images + 1) * 255 / 2).clamp(0, 255).detach().permute(0, 2, 3, 1).round().type(torch.uint8).cpu().numpy()
for i in range(images.shape[0]):
image_path = os.path.join(image_path_dir, image_name_prefix+str(i+1)+'-'+str(random.randint(1000,9999))+'.png')
print(f"Saving image {i+1} / {images.shape[0]} to: {image_path}")
Image.fromarray(images[i]).save(image_path)
def preprocess_image(image):
"""
image: torch.Tensor
"""
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h))
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).contiguous()
return 2.0 * image - 1.0
def prepare_mask_and_masked_image(image, mask):
"""
image: PIL.Image.Image
mask: PIL.Image.Image
"""
if isinstance(image, Image.Image):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32).contiguous() / 127.5 - 1.0
if isinstance(mask, Image.Image):
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask).to(dtype=torch.float32).contiguous()
masked_image = image * (mask < 0.5)
return mask, masked_image
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
def get_refit_weights(state_dict, onnx_opt_path, weight_name_mapping, weight_shape_mapping):
onnx_opt_dir = os.path.dirname(onnx_opt_path)
onnx_opt_model = onnx.load(onnx_opt_path)
# Create initializer data hashes
initializer_hash_mapping = {}
for initializer in onnx_opt_model.graph.initializer:
initializer_data = numpy_helper.to_array(initializer, base_dir=onnx_opt_dir).astype(np.float16)
initializer_hash = hash(initializer_data.data.tobytes())
initializer_hash_mapping[initializer.name] = initializer_hash
refit_weights = OrderedDict()
for wt_name, wt in state_dict.items():
# query initializer to compare
initializer_name = weight_name_mapping[wt_name]
initializer_hash = initializer_hash_mapping[initializer_name]
# get shape transform info
initializer_shape, is_transpose = weight_shape_mapping[wt_name]
if is_transpose:
wt = torch.transpose(wt, 0, 1)
else:
wt = torch.reshape(wt, initializer_shape)
# include weight if hashes differ
wt_hash = hash(wt.cpu().detach().numpy().astype(np.float16).data.tobytes())
if initializer_hash != wt_hash:
refit_weights[initializer_name] = wt.contiguous()
return refit_weights
def load_calib_prompts(batch_size, calib_data_path):
with open(calib_data_path, "r") as file:
lst = [line.rstrip("\n") for line in file]
return [lst[i : i + batch_size] for i in range(0, len(lst), batch_size)]
def filter_func(name):
pattern = re.compile(
r".*(time_emb_proj|time_embedding|conv_in|conv_out|conv_shortcut|add_embedding).*"
)
return pattern.match(name) is not None
def quantize_lvl(unet, quant_level=2.5):
"""
We should disable the unwanted quantizer when exporting the onnx
Because in the current ammo setting, it will load the quantizer amax for all the layers even
if we didn't add that unwanted layer into the config during the calibration
"""
for name, module in unet.named_modules():
if isinstance(module, torch.nn.Conv2d):
module.input_quantizer.enable()
module.weight_quantizer.enable()
elif isinstance(module, torch.nn.Linear):
if (
(quant_level >= 2 and "ff.net" in name)
or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
or quant_level == 3
):
module.input_quantizer.enable()
module.weight_quantizer.enable()
else:
module.input_quantizer.disable()
module.weight_quantizer.disable()
def get_smoothquant_config(model, quant_level=3):
quant_config = {
"quant_cfg": {},
"algorithm": "smoothquant",
}
for name, module in model.named_modules():
w_name = f"{name}*weight_quantizer"
i_name = f"{name}*input_quantizer"
if (
w_name in quant_config["quant_cfg"].keys() # type: ignore
or i_name in quant_config["quant_cfg"].keys() # type: ignore
):
continue
if filter_func(name):
continue
if isinstance(module, torch.nn.Linear):
if (
(quant_level >= 2 and "ff.net" in name)
or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
or quant_level == 3
):
quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0} # type: ignore
quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": -1} # type: ignore
elif isinstance(module, torch.nn.Conv2d):
quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0} # type: ignore
quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": None} # type: ignore
return quant_config
class PercentileAmaxes:
def __init__(self, total_step, percentile) -> None:
self.data = {}
self.total_step = total_step
self.percentile = percentile
self.i = 0
def append(self, item):
_cur_step = self.i % self.total_step
if _cur_step not in self.data.keys():
self.data[_cur_step] = item
else:
self.data[_cur_step] = np.maximum(self.data[_cur_step], item)
self.i += 1
def add_arguments(parser):
# Stable Diffusion configuration
parser.add_argument('--version', type=str, default="1.5", choices=["1.4", "1.5", "dreamshaper-7", "2.0-base", "2.0", "2.1-base", "2.1", "xl-1.0", "xl-turbo"], help="Version of Stable Diffusion")
parser.add_argument('prompt', nargs = '*', help="Text prompt(s) to guide image generation")
parser.add_argument('--negative-prompt', nargs = '*', default=[''], help="The negative prompt(s) to guide the image generation.")
parser.add_argument('--batch-size', type=int, default=1, choices=[1, 2, 4], help="Batch size (repeat prompt)")
parser.add_argument('--batch-count', type=int, default=1, help="Number of images to generate in sequence, one at a time.")
parser.add_argument('--height', type=int, default=512, help="Height of image to generate (must be multiple of 8)")
parser.add_argument('--width', type=int, default=512, help="Height of image to generate (must be multiple of 8)")
parser.add_argument('--denoising-steps', type=int, default=30, help="Number of denoising steps")
parser.add_argument('--scheduler', type=str, default=None, choices=["DDIM", "DDPM", "EulerA", "Euler", "LCM", "LMSD", "PNDM", "UniPC"], help="Scheduler for diffusion process")
parser.add_argument('--guidance-scale', type=float, default=7.5, help="Value of classifier-free guidance scale (must be greater than 1)")
parser.add_argument('--lora-scale', type=float, nargs='+', default=None, help="Scale of LoRA weights, default 1 (must between 0 and 1)")
parser.add_argument('--lora-path', type=str, nargs='+', default=None, help="Path to LoRA adaptor. Ex: 'latent-consistency/lcm-lora-sdv1-5'")
# ONNX export
parser.add_argument('--onnx-opset', type=int, default=18, choices=range(7,19), help="Select ONNX opset version to target for exported models")
parser.add_argument('--onnx-dir', default='onnx', help="Output directory for ONNX export")
# Framework model ckpt
parser.add_argument('--framework-model-dir', default='pytorch_model', help="Directory for HF saved models")
# TensorRT engine build
parser.add_argument('--engine-dir', default='engine', help="Output directory for TensorRT engines")
parser.add_argument('--int8', action='store_true', help="Apply int8 quantization.")
parser.add_argument('--quantization-level', type=float, default=3.0, choices=range(1,4), help="int8/fp8 quantization level, 1: CNN, 2: CNN+FFN, 2.5: CNN+FFN+QKV, 3: CNN+FC")
parser.add_argument('--build-static-batch', action='store_true', help="Build TensorRT engines with fixed batch size.")
parser.add_argument('--build-dynamic-shape', action='store_true', help="Build TensorRT engines with dynamic image shapes.")
parser.add_argument('--build-enable-refit', action='store_true', help="Enable Refit option in TensorRT engines during build.")
parser.add_argument('--build-all-tactics', action='store_true', help="Build TensorRT engines using all tactic sources.")
parser.add_argument('--timing-cache', default=None, type=str, help="Path to the precached timing measurements to accelerate build.")
# TensorRT inference
parser.add_argument('--num-warmup-runs', type=int, default=5, help="Number of warmup runs before benchmarking performance")
parser.add_argument('--use-cuda-graph', action='store_true', help="Enable cuda graph")
parser.add_argument('--nvtx-profile', action='store_true', help="Enable NVTX markers for performance profiling")
parser.add_argument('--torch-inference', default='', help="Run inference with PyTorch (using specified compilation mode) instead of TensorRT.")
parser.add_argument('--seed', type=int, default=None, help="Seed for random generator to get consistent results")
parser.add_argument('--output-dir', default='output', help="Output directory for logs and image artifacts")
parser.add_argument('--hf-token', type=str, help="HuggingFace API access token for downloading model checkpoints")
parser.add_argument('-v', '--verbose', action='store_true', help="Show verbose output")
return parser
def process_pipeline_args(args):
if args.height % 8 != 0 or args.width % 8 != 0:
raise ValueError(f"Image height and width have to be divisible by 8 but specified as: {args.image_height} and {args.width}.")
max_batch_size = 4
if args.batch_size > max_batch_size:
raise ValueError(f"Batch size {args.batch_size} is larger than allowed {max_batch_size}.")
if args.use_cuda_graph and (not args.build_static_batch or args.build_dynamic_shape):
raise ValueError(f"Using CUDA graph requires static dimensions. Enable `--build-static-batch` and do not specify `--build-dynamic-shape`")
if args.int8 and not args.version.startswith('xl'):
raise ValueError(f"int8 quantization only supported for SDXL pipeline.")
kwargs_init_pipeline = {
'version': args.version,
'max_batch_size': max_batch_size,
'denoising_steps': args.denoising_steps,
'scheduler': args.scheduler,
'guidance_scale': args.guidance_scale,
'output_dir': args.output_dir,
'hf_token': args.hf_token,
'verbose': args.verbose,
'nvtx_profile': args.nvtx_profile,
'use_cuda_graph': args.use_cuda_graph,
'lora_scale': args.lora_scale,
'lora_path': args.lora_path,
'framework_model_dir': args.framework_model_dir,
'torch_inference': args.torch_inference,
}
kwargs_load_engine = {
'onnx_opset': args.onnx_opset,
'opt_batch_size': args.batch_size,
'opt_image_height': args.height,
'opt_image_width': args.width,
'static_batch': args.build_static_batch,
'static_shape': not args.build_dynamic_shape,
'enable_all_tactics': args.build_all_tactics,
'enable_refit': args.build_enable_refit,
'timing_cache': args.timing_cache,
'int8': args.int8,
'quantization_level': args.quantization_level,
'denoising_steps': args.denoising_steps,
}
args_run_demo = (args.prompt, args.negative_prompt, args.height, args.width, args.batch_size, args.batch_count, args.num_warmup_runs, args.use_cuda_graph)
return kwargs_init_pipeline, kwargs_load_engine, args_run_demo