|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
from cuda import cudart |
|
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from enum import Enum, auto |
|
import gc |
|
from io import BytesIO |
|
import numpy as np |
|
import onnx |
|
from onnx import numpy_helper |
|
import onnx_graphsurgeon as gs |
|
import os |
|
from PIL import Image |
|
from polygraphy.backend.common import bytes_from_path |
|
from polygraphy.backend.trt import ( |
|
CreateConfig, |
|
ModifyNetworkOutputs, |
|
Profile, |
|
engine_from_bytes, |
|
engine_from_network, |
|
network_from_onnx_path, |
|
save_engine |
|
) |
|
import random |
|
import re |
|
import requests |
|
from scipy import integrate |
|
import tensorrt as trt |
|
import torch |
|
import types |
|
|
|
TRT_LOGGER = trt.Logger(trt.Logger.ERROR) |
|
|
|
|
|
numpy_to_torch_dtype_dict = { |
|
np.uint8 : torch.uint8, |
|
np.int8 : torch.int8, |
|
np.int16 : torch.int16, |
|
np.int32 : torch.int32, |
|
np.int64 : torch.int64, |
|
np.float16 : torch.float16, |
|
np.float32 : torch.float32, |
|
np.float64 : torch.float64, |
|
np.complex64 : torch.complex64, |
|
np.complex128 : torch.complex128 |
|
} |
|
if np.version.full_version >= "1.24.0": |
|
numpy_to_torch_dtype_dict[np.bool_] = torch.bool |
|
else: |
|
numpy_to_torch_dtype_dict[np.bool] = torch.bool |
|
|
|
|
|
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()} |
|
|
|
def unload_model(model): |
|
if model: |
|
del model |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
def replace_lora_layers(model): |
|
def lora_forward(self, x, scale=None): |
|
return self._torch_forward(x) |
|
|
|
for name, module in model.named_modules(): |
|
if isinstance(module, LoRACompatibleConv): |
|
in_channels = module.in_channels |
|
out_channels = module.out_channels |
|
kernel_size = module.kernel_size |
|
stride = module.stride |
|
padding = module.padding |
|
dilation = module.dilation |
|
groups = module.groups |
|
bias = module.bias |
|
|
|
new_conv = torch.nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias is not None, |
|
) |
|
|
|
new_conv.weight.data = module.weight.data.clone().to(module.weight.data.device) |
|
if bias is not None: |
|
new_conv.bias.data = module.bias.data.clone().to(module.bias.data.device) |
|
|
|
|
|
path = name.split(".") |
|
sub_module = model |
|
for p in path[:-1]: |
|
sub_module = getattr(sub_module, p) |
|
setattr(sub_module, path[-1], new_conv) |
|
new_conv._torch_forward = new_conv.forward |
|
new_conv.forward = types.MethodType(lora_forward, new_conv) |
|
|
|
elif isinstance(module, LoRACompatibleLinear): |
|
in_features = module.in_features |
|
out_features = module.out_features |
|
bias = module.bias |
|
|
|
new_linear = torch.nn.Linear(in_features, out_features, bias=bias is not None) |
|
|
|
new_linear.weight.data = module.weight.data.clone().to(module.weight.data.device) |
|
if bias is not None: |
|
new_linear.bias.data = module.bias.data.clone().to(module.bias.data.device) |
|
|
|
|
|
path = name.split(".") |
|
sub_module = model |
|
for p in path[:-1]: |
|
sub_module = getattr(sub_module, p) |
|
setattr(sub_module, path[-1], new_linear) |
|
new_linear._torch_forward = new_linear.forward |
|
new_linear.forward = types.MethodType(lora_forward, new_linear) |
|
|
|
def merge_loras(model, lora_dict, lora_alphas, lora_scales): |
|
assert len(lora_scales) == len(lora_dict) |
|
for path, lora in lora_dict.items(): |
|
print(f"[I] Fusing LoRA: {path}, scale {lora_scales[path]}") |
|
model.load_attn_procs(lora, network_alphas=lora_alphas[path]) |
|
model.fuse_lora(lora_scale=lora_scales[path]) |
|
return model |
|
|
|
def CUASSERT(cuda_ret): |
|
err = cuda_ret[0] |
|
if err != cudart.cudaError_t.cudaSuccess: |
|
raise RuntimeError(f"CUDA ERROR: {err}, error code reference: https://nvidia.github.io/cuda-python/module/cudart.html#cuda.cudart.cudaError_t") |
|
if len(cuda_ret) > 1: |
|
return cuda_ret[1] |
|
return None |
|
|
|
class PIPELINE_TYPE(Enum): |
|
TXT2IMG = auto() |
|
IMG2IMG = auto() |
|
INPAINT = auto() |
|
CONTROLNET = auto() |
|
XL_BASE = auto() |
|
XL_REFINER = auto() |
|
|
|
def is_txt2img(self): |
|
return self == self.TXT2IMG |
|
|
|
def is_img2img(self): |
|
return self == self.IMG2IMG |
|
|
|
def is_inpaint(self): |
|
return self == self.INPAINT |
|
|
|
def is_controlnet(self): |
|
return self == self.CONTROLNET |
|
|
|
def is_sd_xl_base(self): |
|
return self == self.XL_BASE |
|
|
|
def is_sd_xl_refiner(self): |
|
return self == self.XL_REFINER |
|
|
|
def is_sd_xl(self): |
|
return self.is_sd_xl_base() or self.is_sd_xl_refiner() |
|
|
|
class Engine(): |
|
def __init__( |
|
self, |
|
engine_path, |
|
): |
|
self.engine_path = engine_path |
|
self.engine = None |
|
self.context = None |
|
self.buffers = OrderedDict() |
|
self.tensors = OrderedDict() |
|
self.cuda_graph_instance = None |
|
|
|
def __del__(self): |
|
del self.engine |
|
del self.context |
|
del self.buffers |
|
del self.tensors |
|
|
|
def refit(self, refit_weights, is_fp16): |
|
|
|
refitter = trt.Refitter(self.engine, TRT_LOGGER) |
|
|
|
refitted_weights = set() |
|
|
|
for trt_weight_name in refitter.get_all_weights(): |
|
if trt_weight_name not in refit_weights: |
|
continue |
|
|
|
|
|
trt_datatype = trt.DataType.FLOAT |
|
if is_fp16: |
|
refit_weights[trt_weight_name] = refit_weights[trt_weight_name].half() |
|
trt_datatype = trt.DataType.HALF |
|
|
|
|
|
trt_wt_tensor = trt.Weights(trt_datatype, refit_weights[trt_weight_name].data_ptr(), torch.numel(refit_weights[trt_weight_name])) |
|
trt_wt_location = trt.TensorLocation.DEVICE if refit_weights[trt_weight_name].is_cuda else trt.TensorLocation.HOST |
|
|
|
|
|
refitter.set_named_weights(trt_weight_name, trt_wt_tensor, trt_wt_location) |
|
refitted_weights.add(trt_weight_name) |
|
|
|
assert set(refitted_weights) == set(refit_weights.keys()) |
|
if not refitter.refit_cuda_engine(): |
|
print("Error: failed to refit new weights.") |
|
exit(0) |
|
|
|
print(f"[I] Total refitted weights {len(refitted_weights)}.") |
|
|
|
def build(self, |
|
onnx_path, |
|
fp16=True, |
|
tf32=False, |
|
int8=False, |
|
input_profile=None, |
|
enable_refit=False, |
|
enable_all_tactics=False, |
|
timing_cache=None, |
|
update_output_names=None, |
|
**extra_build_args |
|
): |
|
print(f"Building TensorRT engine for {onnx_path}: {self.engine_path}") |
|
p = Profile() |
|
if input_profile: |
|
for name, dims in input_profile.items(): |
|
assert len(dims) == 3 |
|
p.add(name, min=dims[0], opt=dims[1], max=dims[2]) |
|
|
|
if not enable_all_tactics: |
|
extra_build_args['tactic_sources'] = [] |
|
|
|
network = network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]) |
|
if update_output_names: |
|
print(f"Updating network outputs to {update_output_names}") |
|
network = ModifyNetworkOutputs(network, update_output_names) |
|
engine = engine_from_network( |
|
network, |
|
config=CreateConfig(fp16=fp16, |
|
tf32=tf32, |
|
int8=int8, |
|
refittable=enable_refit, |
|
profiles=[p], |
|
load_timing_cache=timing_cache, |
|
**extra_build_args |
|
), |
|
save_timing_cache=timing_cache |
|
) |
|
save_engine(engine, path=self.engine_path) |
|
|
|
def load(self): |
|
print(f"Loading TensorRT engine: {self.engine_path}") |
|
self.engine = engine_from_bytes(bytes_from_path(self.engine_path)) |
|
|
|
def activate(self, reuse_device_memory=None): |
|
if reuse_device_memory: |
|
self.context = self.engine.create_execution_context_without_device_memory() |
|
self.context.device_memory = reuse_device_memory |
|
else: |
|
self.context = self.engine.create_execution_context() |
|
|
|
def allocate_buffers(self, shape_dict=None, device='cuda'): |
|
for idx in range(self.engine.num_io_tensors): |
|
binding = self.engine[idx] |
|
if shape_dict and binding in shape_dict: |
|
shape = shape_dict[binding] |
|
else: |
|
shape = self.engine.get_binding_shape(binding) |
|
dtype = trt.nptype(self.engine.get_binding_dtype(binding)) |
|
if self.engine.binding_is_input(binding): |
|
self.context.set_binding_shape(idx, shape) |
|
tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device) |
|
self.tensors[binding] = tensor |
|
|
|
def infer(self, feed_dict, stream, use_cuda_graph=False): |
|
|
|
for name, buf in feed_dict.items(): |
|
self.tensors[name].copy_(buf) |
|
|
|
for name, tensor in self.tensors.items(): |
|
self.context.set_tensor_address(name, tensor.data_ptr()) |
|
|
|
if use_cuda_graph: |
|
if self.cuda_graph_instance is not None: |
|
CUASSERT(cudart.cudaGraphLaunch(self.cuda_graph_instance, stream)) |
|
CUASSERT(cudart.cudaStreamSynchronize(stream)) |
|
else: |
|
|
|
noerror = self.context.execute_async_v3(stream) |
|
if not noerror: |
|
raise ValueError(f"ERROR: inference failed.") |
|
|
|
CUASSERT(cudart.cudaStreamBeginCapture(stream, cudart.cudaStreamCaptureMode.cudaStreamCaptureModeGlobal)) |
|
self.context.execute_async_v3(stream) |
|
self.graph = CUASSERT(cudart.cudaStreamEndCapture(stream)) |
|
self.cuda_graph_instance = CUASSERT(cudart.cudaGraphInstantiate(self.graph, 0)) |
|
else: |
|
noerror = self.context.execute_async_v3(stream) |
|
if not noerror: |
|
raise ValueError(f"ERROR: inference failed.") |
|
|
|
return self.tensors |
|
|
|
def save_image(images, image_path_dir, image_name_prefix): |
|
""" |
|
Save the generated images to png files. |
|
""" |
|
images = ((images + 1) * 255 / 2).clamp(0, 255).detach().permute(0, 2, 3, 1).round().type(torch.uint8).cpu().numpy() |
|
for i in range(images.shape[0]): |
|
image_path = os.path.join(image_path_dir, image_name_prefix+str(i+1)+'-'+str(random.randint(1000,9999))+'.png') |
|
print(f"Saving image {i+1} / {images.shape[0]} to: {image_path}") |
|
Image.fromarray(images[i]).save(image_path) |
|
|
|
def preprocess_image(image): |
|
""" |
|
image: torch.Tensor |
|
""" |
|
w, h = image.size |
|
w, h = map(lambda x: x - x % 32, (w, h)) |
|
image = image.resize((w, h)) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).contiguous() |
|
return 2.0 * image - 1.0 |
|
|
|
def prepare_mask_and_masked_image(image, mask): |
|
""" |
|
image: PIL.Image.Image |
|
mask: PIL.Image.Image |
|
""" |
|
if isinstance(image, Image.Image): |
|
image = np.array(image.convert("RGB")) |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32).contiguous() / 127.5 - 1.0 |
|
if isinstance(mask, Image.Image): |
|
mask = np.array(mask.convert("L")) |
|
mask = mask.astype(np.float32) / 255.0 |
|
mask = mask[None, None] |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask).to(dtype=torch.float32).contiguous() |
|
|
|
masked_image = image * (mask < 0.5) |
|
|
|
return mask, masked_image |
|
|
|
def download_image(url): |
|
response = requests.get(url) |
|
return Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
def get_refit_weights(state_dict, onnx_opt_path, weight_name_mapping, weight_shape_mapping): |
|
onnx_opt_dir = os.path.dirname(onnx_opt_path) |
|
onnx_opt_model = onnx.load(onnx_opt_path) |
|
|
|
initializer_hash_mapping = {} |
|
for initializer in onnx_opt_model.graph.initializer: |
|
initializer_data = numpy_helper.to_array(initializer, base_dir=onnx_opt_dir).astype(np.float16) |
|
initializer_hash = hash(initializer_data.data.tobytes()) |
|
initializer_hash_mapping[initializer.name] = initializer_hash |
|
|
|
refit_weights = OrderedDict() |
|
for wt_name, wt in state_dict.items(): |
|
|
|
initializer_name = weight_name_mapping[wt_name] |
|
initializer_hash = initializer_hash_mapping[initializer_name] |
|
|
|
|
|
initializer_shape, is_transpose = weight_shape_mapping[wt_name] |
|
if is_transpose: |
|
wt = torch.transpose(wt, 0, 1) |
|
else: |
|
wt = torch.reshape(wt, initializer_shape) |
|
|
|
|
|
wt_hash = hash(wt.cpu().detach().numpy().astype(np.float16).data.tobytes()) |
|
if initializer_hash != wt_hash: |
|
refit_weights[initializer_name] = wt.contiguous() |
|
return refit_weights |
|
|
|
def load_calib_prompts(batch_size, calib_data_path): |
|
with open(calib_data_path, "r") as file: |
|
lst = [line.rstrip("\n") for line in file] |
|
return [lst[i : i + batch_size] for i in range(0, len(lst), batch_size)] |
|
|
|
def filter_func(name): |
|
pattern = re.compile( |
|
r".*(time_emb_proj|time_embedding|conv_in|conv_out|conv_shortcut|add_embedding).*" |
|
) |
|
return pattern.match(name) is not None |
|
|
|
def quantize_lvl(unet, quant_level=2.5): |
|
""" |
|
We should disable the unwanted quantizer when exporting the onnx |
|
Because in the current ammo setting, it will load the quantizer amax for all the layers even |
|
if we didn't add that unwanted layer into the config during the calibration |
|
""" |
|
for name, module in unet.named_modules(): |
|
if isinstance(module, torch.nn.Conv2d): |
|
module.input_quantizer.enable() |
|
module.weight_quantizer.enable() |
|
elif isinstance(module, torch.nn.Linear): |
|
if ( |
|
(quant_level >= 2 and "ff.net" in name) |
|
or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name)) |
|
or quant_level == 3 |
|
): |
|
module.input_quantizer.enable() |
|
module.weight_quantizer.enable() |
|
else: |
|
module.input_quantizer.disable() |
|
module.weight_quantizer.disable() |
|
|
|
def get_smoothquant_config(model, quant_level=3): |
|
quant_config = { |
|
"quant_cfg": {}, |
|
"algorithm": "smoothquant", |
|
} |
|
for name, module in model.named_modules(): |
|
w_name = f"{name}*weight_quantizer" |
|
i_name = f"{name}*input_quantizer" |
|
|
|
if ( |
|
w_name in quant_config["quant_cfg"].keys() |
|
or i_name in quant_config["quant_cfg"].keys() |
|
): |
|
continue |
|
if filter_func(name): |
|
continue |
|
if isinstance(module, torch.nn.Linear): |
|
if ( |
|
(quant_level >= 2 and "ff.net" in name) |
|
or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name)) |
|
or quant_level == 3 |
|
): |
|
quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0} |
|
quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": -1} |
|
elif isinstance(module, torch.nn.Conv2d): |
|
quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0} |
|
quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": None} |
|
return quant_config |
|
|
|
class PercentileAmaxes: |
|
def __init__(self, total_step, percentile) -> None: |
|
self.data = {} |
|
self.total_step = total_step |
|
self.percentile = percentile |
|
self.i = 0 |
|
|
|
def append(self, item): |
|
_cur_step = self.i % self.total_step |
|
if _cur_step not in self.data.keys(): |
|
self.data[_cur_step] = item |
|
else: |
|
self.data[_cur_step] = np.maximum(self.data[_cur_step], item) |
|
self.i += 1 |
|
|
|
def add_arguments(parser): |
|
|
|
parser.add_argument('--version', type=str, default="1.5", choices=["1.4", "1.5", "dreamshaper-7", "2.0-base", "2.0", "2.1-base", "2.1", "xl-1.0", "xl-turbo"], help="Version of Stable Diffusion") |
|
parser.add_argument('prompt', nargs = '*', help="Text prompt(s) to guide image generation") |
|
parser.add_argument('--negative-prompt', nargs = '*', default=[''], help="The negative prompt(s) to guide the image generation.") |
|
parser.add_argument('--batch-size', type=int, default=1, choices=[1, 2, 4], help="Batch size (repeat prompt)") |
|
parser.add_argument('--batch-count', type=int, default=1, help="Number of images to generate in sequence, one at a time.") |
|
parser.add_argument('--height', type=int, default=512, help="Height of image to generate (must be multiple of 8)") |
|
parser.add_argument('--width', type=int, default=512, help="Height of image to generate (must be multiple of 8)") |
|
parser.add_argument('--denoising-steps', type=int, default=30, help="Number of denoising steps") |
|
parser.add_argument('--scheduler', type=str, default=None, choices=["DDIM", "DDPM", "EulerA", "Euler", "LCM", "LMSD", "PNDM", "UniPC"], help="Scheduler for diffusion process") |
|
parser.add_argument('--guidance-scale', type=float, default=7.5, help="Value of classifier-free guidance scale (must be greater than 1)") |
|
parser.add_argument('--lora-scale', type=float, nargs='+', default=None, help="Scale of LoRA weights, default 1 (must between 0 and 1)") |
|
parser.add_argument('--lora-path', type=str, nargs='+', default=None, help="Path to LoRA adaptor. Ex: 'latent-consistency/lcm-lora-sdv1-5'") |
|
|
|
|
|
parser.add_argument('--onnx-opset', type=int, default=18, choices=range(7,19), help="Select ONNX opset version to target for exported models") |
|
parser.add_argument('--onnx-dir', default='onnx', help="Output directory for ONNX export") |
|
|
|
|
|
parser.add_argument('--framework-model-dir', default='pytorch_model', help="Directory for HF saved models") |
|
|
|
|
|
parser.add_argument('--engine-dir', default='engine', help="Output directory for TensorRT engines") |
|
parser.add_argument('--int8', action='store_true', help="Apply int8 quantization.") |
|
parser.add_argument('--quantization-level', type=float, default=3.0, choices=range(1,4), help="int8/fp8 quantization level, 1: CNN, 2: CNN+FFN, 2.5: CNN+FFN+QKV, 3: CNN+FC") |
|
parser.add_argument('--build-static-batch', action='store_true', help="Build TensorRT engines with fixed batch size.") |
|
parser.add_argument('--build-dynamic-shape', action='store_true', help="Build TensorRT engines with dynamic image shapes.") |
|
parser.add_argument('--build-enable-refit', action='store_true', help="Enable Refit option in TensorRT engines during build.") |
|
parser.add_argument('--build-all-tactics', action='store_true', help="Build TensorRT engines using all tactic sources.") |
|
parser.add_argument('--timing-cache', default=None, type=str, help="Path to the precached timing measurements to accelerate build.") |
|
|
|
|
|
parser.add_argument('--num-warmup-runs', type=int, default=5, help="Number of warmup runs before benchmarking performance") |
|
parser.add_argument('--use-cuda-graph', action='store_true', help="Enable cuda graph") |
|
parser.add_argument('--nvtx-profile', action='store_true', help="Enable NVTX markers for performance profiling") |
|
parser.add_argument('--torch-inference', default='', help="Run inference with PyTorch (using specified compilation mode) instead of TensorRT.") |
|
|
|
parser.add_argument('--seed', type=int, default=None, help="Seed for random generator to get consistent results") |
|
parser.add_argument('--output-dir', default='output', help="Output directory for logs and image artifacts") |
|
parser.add_argument('--hf-token', type=str, help="HuggingFace API access token for downloading model checkpoints") |
|
parser.add_argument('-v', '--verbose', action='store_true', help="Show verbose output") |
|
return parser |
|
|
|
def process_pipeline_args(args): |
|
if args.height % 8 != 0 or args.width % 8 != 0: |
|
raise ValueError(f"Image height and width have to be divisible by 8 but specified as: {args.image_height} and {args.width}.") |
|
|
|
max_batch_size = 4 |
|
if args.batch_size > max_batch_size: |
|
raise ValueError(f"Batch size {args.batch_size} is larger than allowed {max_batch_size}.") |
|
|
|
if args.use_cuda_graph and (not args.build_static_batch or args.build_dynamic_shape): |
|
raise ValueError(f"Using CUDA graph requires static dimensions. Enable `--build-static-batch` and do not specify `--build-dynamic-shape`") |
|
|
|
if args.int8 and not args.version.startswith('xl'): |
|
raise ValueError(f"int8 quantization only supported for SDXL pipeline.") |
|
|
|
kwargs_init_pipeline = { |
|
'version': args.version, |
|
'max_batch_size': max_batch_size, |
|
'denoising_steps': args.denoising_steps, |
|
'scheduler': args.scheduler, |
|
'guidance_scale': args.guidance_scale, |
|
'output_dir': args.output_dir, |
|
'hf_token': args.hf_token, |
|
'verbose': args.verbose, |
|
'nvtx_profile': args.nvtx_profile, |
|
'use_cuda_graph': args.use_cuda_graph, |
|
'lora_scale': args.lora_scale, |
|
'lora_path': args.lora_path, |
|
'framework_model_dir': args.framework_model_dir, |
|
'torch_inference': args.torch_inference, |
|
} |
|
|
|
kwargs_load_engine = { |
|
'onnx_opset': args.onnx_opset, |
|
'opt_batch_size': args.batch_size, |
|
'opt_image_height': args.height, |
|
'opt_image_width': args.width, |
|
'static_batch': args.build_static_batch, |
|
'static_shape': not args.build_dynamic_shape, |
|
'enable_all_tactics': args.build_all_tactics, |
|
'enable_refit': args.build_enable_refit, |
|
'timing_cache': args.timing_cache, |
|
'int8': args.int8, |
|
'quantization_level': args.quantization_level, |
|
'denoising_steps': args.denoising_steps, |
|
} |
|
|
|
args_run_demo = (args.prompt, args.negative_prompt, args.height, args.width, args.batch_size, args.batch_count, args.num_warmup_runs, args.use_cuda_graph) |
|
|
|
return kwargs_init_pipeline, kwargs_load_engine, args_run_demo |
|
|