|
--- |
|
tags: |
|
- summarization |
|
widget: |
|
- text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" |
|
|
|
--- |
|
|
|
|
|
# CodeTrans model for code documentation generation python |
|
Pretrained model on programming language python using the t5 base model architecture. It was first released in |
|
[this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. |
|
|
|
|
|
## Model description |
|
|
|
This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus python dataset. |
|
|
|
## Intended uses & limitations |
|
|
|
The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. |
|
|
|
### How to use |
|
|
|
Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline |
|
|
|
pipeline = SummarizationPipeline( |
|
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python"), |
|
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python", skip_special_tokens=True), |
|
device=0 |
|
) |
|
|
|
tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" |
|
pipeline([tokenized_code]) |
|
``` |
|
Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/python/base_model.ipynb). |
|
## Training data |
|
|
|
The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) |
|
|
|
|
|
## Evaluation results |
|
|
|
For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): |
|
|
|
Test results : |
|
|
|
| Language / Model | Python | Java | Go | Php | Ruby | JavaScript | |
|
| -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | |
|
| CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | |
|
| CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | |
|
| CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | |
|
| CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | |
|
| CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | |
|
| CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | |
|
| CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | |
|
| CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | |
|
| CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | |
|
| CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | |
|
| CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | |
|
| State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | |
|
|
|
|
|
> Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/) |
|
|
|
|
|
|