CodeTrans model for code documentation generation java
Pretrained model on programming language java using the t5 small model architecture. It was first released in this repository. This model is trained on tokenized java code functions: it works best with tokenized java functions.
Model description
This CodeTrans model is based on the t5-small
model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets.
Intended uses & limitations
The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better.
How to use
Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline:
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
pipeline = SummarizationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask"),
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask", skip_special_tokens=True),
device=0
)
tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }"
pipeline([tokenized_code])
Run this example in colab notebook.
Training data
The supervised training tasks datasets can be downloaded on Link
Training procedure
Multi-task Pretraining
The model was trained on a single TPU Pod V3-8 for 400,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
Evaluation results
For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score):
Test results :
Language / Model | Python | Java | Go | Php | Ruby | JavaScript |
---|---|---|---|---|---|---|
CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 |
CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 |
CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 |
CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 |
CodeTrans-TF-Large | 20.35 | 20.06 | 19.54 | 26.18 | 14.94 | 18.98 |
CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 |
CodeTrans-MT-Base | 20.39 | 21.22 | 19.43 | 26.23 | 15.26 | 16.11 |
CodeTrans-MT-Large | 20.18 | 21.87 | 19.38 | 26.08 | 15.00 | 16.23 |
CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 |
CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 |
CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 |
State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 |
Created by Ahmed Elnaggar | LinkedIn and Wei Ding | LinkedIn
- Downloads last month
- 10