SOLAR-10.7B-slerp
SOLAR-10.7B-slerp is a merge of the following models using mergekit:
Github
https://github.com/sunjin7725/SOLAR-10.7b-slerp
Benchmark
Open-Ko-LLM-Leaderboard
Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|
56.93 | 53.58 | 62.03 | 53.31 | 57.16 | 58.56 |
How to use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
repo = 'SJ-Donald/SOLAR-10.7B-slerp'
tokenizer = AutoTokenizer.from_pretrained(repo)
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
🧩 Configuration
slices:
- sources:
- model: LDCC/LDCC-SOLAR-10.7B
layer_range: [0, 48]
- model: upstage/SOLAR-10.7B-Instruct-v1.0
layer_range: [0, 48]
merge_method: slerp
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
tokenizer_source: union
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.58 |
AI2 Reasoning Challenge (25-Shot) | 68.17 |
HellaSwag (10-Shot) | 86.91 |
MMLU (5-Shot) | 66.73 |
TruthfulQA (0-shot) | 67.42 |
Winogrande (5-shot) | 84.06 |
GSM8k (5-shot) | 62.17 |
- Downloads last month
- 3,293
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for SJ-Donald/SOLAR-10.7B-slerp
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard68.170
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard86.910
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard66.730
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard67.420
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard84.060
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard62.170