|
--- |
|
language: fa |
|
datasets: |
|
- common_voice_6_1 |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
license: mit |
|
widget: |
|
- example_title: Common Voice Sample 1 |
|
src: https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/0/audio/audio.mp3 |
|
- example_title: Common Voice Sample 2 |
|
src: https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/1/audio/audio.mp3 |
|
model-index: |
|
- name: Sharif-wav2vec2 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice Corpus 6.1 (clean) |
|
type: common_voice_6_1 |
|
config: clean |
|
split: test |
|
args: |
|
language: fa |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 6.0 |
|
--- |
|
|
|
# Sharif-wav2vec2 |
|
|
|
This is the fine-tuned version of Sharif Wav2vec2 for Farsi. The base model was fine-tuned on 108 hours of Commonvoice's Farsi samples with a sampling rate equal to 16kHz. Afterward, we trained a 5gram using [kenlm](https://github.com/kpu/kenlm) toolkit and used it in the processor which increased our accuracy on online ASR. |
|
|
|
## Usage |
|
|
|
When using the model make sure that your speech input is sampled at 16Khz. Prior to the usage, you may need to install the below dependencies: |
|
|
|
```shell |
|
pip install pyctcdecode |
|
pip install pypi-kenlm |
|
``` |
|
|
|
For testing you can use the hosted inference API at the hugging face (There are provided examples from common voice) it may take a while to transcribe the given voice. Or you can use the bellow code for a local run: |
|
|
|
```python |
|
import tensorflow |
|
import torchaudio |
|
import torch |
|
import numpy as np |
|
|
|
from transformers import AutoProcessor, AutoModelForCTC |
|
|
|
processor = AutoProcessor.from_pretrained("SLPL/Sharif-wav2vec2") |
|
model = AutoModelForCTC.from_pretrained("SLPL/Sharif-wav2vec2") |
|
|
|
speech_array, sampling_rate = torchaudio.load("path/to/your.wav") |
|
speech_array = speech_array.squeeze().numpy() |
|
|
|
features = processor( |
|
speech_array, |
|
sampling_rate=processor.feature_extractor.sampling_rate, |
|
return_tensors="pt", |
|
padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model( |
|
features.input_values, |
|
attention_mask=features.attention_mask).logits |
|
prediction = processor.batch_decode(logits.numpy()).text |
|
|
|
print(prediction[0]) |
|
# تست |
|
``` |
|
|
|
## Evaluation |
|
For the evaluation use the code below: |
|
```python |
|
pip install datasets |
|
pip install transformers |
|
import torch |
|
import torchaudio |
|
import librosa |
|
from datasets import load_dataset,load_metric |
|
import numpy as np |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from transformers import Wav2Vec2ProcessorWithLM |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("SLPL/Sharif-wav2vec2") |
|
processor = Wav2Vec2ProcessorWithLM.from_pretrained("SLPL/Sharif-wav2vec2") |
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, processor.feature_extractor.sampling_rate) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
def predict(batch): |
|
features = processor( |
|
batch["speech"], |
|
sampling_rate=processor.feature_extractor.sampling_rate, |
|
return_tensors="pt", |
|
padding=True |
|
) |
|
|
|
input_values = features.input_values |
|
attention_mask = features.attention_mask |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits #when we are trying to load model with LM we have to use logits instead of argmax(logits) |
|
batch["prediction"] = processor.batch_decode(logits.numpy()).text |
|
return batch |
|
|
|
dataset = load_dataset("csv", data_files={"test":"path/to/your.csv"}, delimiter=",")["test"] |
|
dataset = dataset.map(speech_file_to_array_fn) |
|
|
|
result = dataset.map(predict, batched=True, batch_size=4) |
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["prediction"], references=result["reference"]))) |
|
print("CER: {:.2f}".format(100 * cer.compute(predictions=result["prediction"], references=result["reference"]))) |
|
``` |
|
|
|
*Result (WER)*: |
|
|
|
| clean | other | |
|
|---|---| |
|
| 6.0 | 16.4 | |
|
|
|
|
|
## Citation |
|
If you want to cite this model you can use this: |
|
|
|
```bibtex |
|
? |
|
``` |