|
--- |
|
license: other |
|
license_name: sla0044 |
|
license_link: >- |
|
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md |
|
--- |
|
# EfficientNet v2 |
|
|
|
## **Use case** : `Image classification` |
|
|
|
# Model description |
|
|
|
|
|
EfficientNet v2 family is one of the best topology for image classification. It has been obtained through neural architecture search with a special care given to training time |
|
and number of parameters reduction. |
|
|
|
This family of networks comprises various subtypes: B0 (224x224), B1 (240x240), B2 (260x260), B3 (300x300), S (384x384) ranked by depth and width increasing order. |
|
There are also M, L, XL variants but too large to be executed efficiently on STM32N6. |
|
|
|
All these networks are already available on https://www.tensorflow.org/api_docs/python/tf/keras/applications/ pre-trained on ImageNet. |
|
|
|
|
|
## Network information |
|
|
|
|
|
| Network Information | Value | |
|
|---------------------|----------------------------------------------------------------------------------| |
|
| Framework | TensorFlow Lite/ONNX quantizer | |
|
| MParams type=B0 | 7.1 M | |
|
| Quantization | int8 | |
|
| Provenance | https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet_v2 | |
|
| Paper | https://arxiv.org/pdf/2104.00298 | |
|
|
|
The models are quantized using tensorflow lite converter or ONNX quantizer. |
|
|
|
|
|
## Network inputs / outputs |
|
|
|
|
|
For an image resolution of NxM and P classes |
|
|
|
| Input Shape | Description | |
|
|---------------|---------------------------------------------------------------------| |
|
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 for tflite | |
|
| (1, 3, N, M) | Single NxM RGB image with INT8 values between -128 and 127 for ONNX | |
|
|
|
| Output Shape | Description | |
|
| ----- |----------------------------------------------------------| |
|
| (1, P) | Per-class confidence for P classes in FLOAT32 for tflite | |
|
| (1, P) | Per-class confidence for P classes in FLOAT32 for ONNX | |
|
|
|
|
|
## Recommended platforms |
|
|
|
|
|
| Platform | Supported | Recommended | |
|
|-----------|-----------|-------------| |
|
| STM32L0 |[]| [] | |
|
| STM32L4 |[]| [] | |
|
| STM32U5 |[]| [] | |
|
| STM32H7 |[]| [] | |
|
| STM32MP1 |[x]| [x] | |
|
| STM32MP2 |[x]| [x] | |
|
| STM32N6 |[x]| [x] | |
|
|
|
|
|
# Performances |
|
|
|
## Metrics |
|
|
|
* Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option. |
|
|
|
* `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training. |
|
|
|
|
|
|
|
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset) |
|
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version | |
|
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| |
|
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | food-101 | Int8 | 224x224x3 | STM32N6 | 1834.44 |0.0| 7553.77 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | food-101 | Int8 | 240x240x3 | STM32N6 | 2589.97 |0.0| 8924.78 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | food-101 | Int8 | 260x260x3 | STM32N6 | 2629.56 |528.12| 11212.75| 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | food-10 | Int8 | 384x384x3 | STM32N6 | 2700 | 6912 | 25756.92 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | ImageNet | Int8 | 224x224x3 | STM32N6 | 1834.44 | 0.0 | 8680.39 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | ImageNet | Int8 | 240x240x3 | STM32N6 | 2589.97 | 0.0 | 10051.7 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | ImageNet | Int8 | 260x260x3 | STM32N6 | 2629.56 | 528.12 | 12451.77 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | ImageNet | Int8 | 384x384x3 | STM32N6 | 2700 | 6912 | 26884.47 | 10.0.0 | 2.0.0 | |
|
|
|
|
|
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset) |
|
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version | |
|
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------| |
|
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 54.32 | 18.41 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | food-101 | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU | 73.89 | 13.53 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | food-101 | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU | 146.01 | 6.85 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | food-101 | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU | 842 | 1.19 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 57.5 | 17.39 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | ImageNet | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU | 77.25 | 12.94 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | ImageNet | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU | 148.78 | 6.72 | 10.0.0 | 2.0.0 | |
|
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | ImageNet | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU | 809.73 | 1.23 | 10.0.0 | 2.0.0 | |
|
|
|
* The deployment of all the models listed in the table is supported, except for the efficientnet_v2S_384 model, for which support is coming soon. |
|
### Accuracy with Food-101 dataset |
|
|
|
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/) , Quotation[[3]](#3) , Number of classes: 101 , Number of images: 101 000 |
|
|
|
| Model | Format | Resolution | Top 1 Accuracy | |
|
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------| |
|
| [efficientnet_v2B0_224_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft.h5) | Float | 224x224x3 | 81.35 % | |
|
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | Int8 | 224x224x3 | 81.1 % | |
|
| [efficientnet_v2B1_240_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft.h5) | Float | 240x240x3 | 83.23 % | |
|
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | Int8 | 240x240x3 | 82.95 % | |
|
| [efficientnet_v2B2_260_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft.h5) | Float | 260x260x3 | 84.37 % | |
|
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | Int8 | 260x260x3 | 84.04 % | |
|
| [efficientnet_v2S_384_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft.h5) | Float | 384x384x3 | 88.16 % | |
|
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | Int8 | 384x384x3 | 87.34 % | |
|
|
|
|
|
### Accuracy with ImageNet |
|
|
|
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4) |
|
Number of classes: 1000. |
|
To perform the quantization, we calibrated the activations with a random subset of the training set. |
|
For the sake of simplicity, the accuracy reported here was estimated on the 10000 labelled images of the validation set. |
|
|
|
| Model | Format | Resolution | Top 1 Accuracy | |
|
|------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------------| |
|
| [efficientnet_v2B0_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224.h5) | Float | 224x224x3 | 73.94 % | |
|
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | Int8 | 224x224x3 | 72.21 % | |
|
| [efficientnet_v2B1_240](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240.h5) | Float | 240x240x3 | 76.14 % | |
|
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | Int8 | 240x240x3 | 75.5 % | |
|
| [efficientnet_v2B2_260](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260.h5) | Float | 260x260x3 | 76.58 % | |
|
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | Int8 | 260x260x3 | 76.26 % | |
|
| [efficientnet_v2S_384](./Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384.h5) | Float | 384x384x3 | 83.52 % | |
|
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | Int8 | 384x384x3 | 83.07 % | |
|
|
|
|
|
## Retraining and Integration in a simple example: |
|
|
|
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services) |
|
|
|
|
|
# References |
|
|
|
<a id="1">[1]</a> |
|
"Tf_flowers : tensorflow datasets," TensorFlow. [Online]. Available: https://www.tensorflow.org/datasets/catalog/tf_flowers. |
|
|
|
<a id="2">[2]</a> |
|
J, ARUN PANDIAN; GOPAL, GEETHARAMANI (2019), "Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network", Mendeley Data, V1, doi: 10.17632/tywbtsjrjv.1 |
|
|
|
<a id="3">[3]</a> |
|
L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative Components with Random Forests." European Conference on Computer Vision, 2014. |
|
|
|
<a id="4">[4]</a> |
|
Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. |
|
(* = equal contribution) ImageNet Large Scale Visual Recognition Challenge. |
|
|
|
|