Object Detection
st_yolo_lc_v1 / README.md
FBAGSTM's picture
Update README.md
c9a89ed verified
---
license: other
license_name: sla0044
license_link: >-
https://github.st.com/AIS/stm32ai-modelzoo/raw/master/object_detection/LICENSE.md
pipeline_tag: object-detection
---
# ST YOLO LC V1 quantized
## **Use case** : `Object detection`
# Model description
ST Yolo LC v1 is a real-time object detection model targeted for real-time processing implemented in Tensorflow.
The model is quantized in int8 format using tensorflow lite converter.
## Network information
| Network information | Value |
|-------------------------|-----------------|
| Framework | TensorFlow Lite |
| Quantization | int8 |
| Paper | https://pjreddie.com/media/files/papers/YOLO9000.pdf |
The models are quantized using tensorflow lite converter.
## Network inputs / outputs
For an image resolution of NxM and NC classes
| Input Shape | Description |
| ----- | ----------- |
| (1, W, H, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| (1, WxH, NAx(5+NC)) | FLOAT values Where WXH is the resolution of the output grid cell, NA is the number of anchors and NC is the number of classes|
## Recommended Platforms
| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [x] | [x] |
| STM32MP1 | [x] | [x] |
| STM32MP2 | [x] | [] |
| STM32N6 | [x] | [] |
# Performances
## Metrics
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|---------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|----------|----------------------|----------------------|-----------------------|------------------------|-------------------------|
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 252 | 0 | 316.69 | 10.2.0 | 2.2.0 |
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 343 | 0 | 316.69 | 10.2.0 | 2.2.0 |
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 576 | 0 | 316.69 | 10.2.0 | 2.2.0 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|---------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|---------------|--------------------|-----------------------|-------------|------------------------|-------------------------|
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 1.96 | 510.2 | 10.2.0 | 2.2.0 |
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 2.36 | 423.73 | 10.2.0 | 2.2.0 |
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 3.02 | 331.13 | 10.2.0 | 2.2.0 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|---------------------------------------------------------------------------------------------------------------------|----------|--------------|----------|------------------|---------------|-----------------|--------------|-------------|---------------|------------------------|
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 166.29 | 8.09 | 276.73 | 52.81 | 174.38 | 329.54 | 10.2.0 |
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 217.29 | 8.09 | 276.73 | 52.82 | 225.38 | 329.55 | 10.2.0 |
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 278.29 | 8.09 | 276.73 | 52.81 | 286.38 | 329.54 | 10.2.0 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|---------------------------------------------------------------------------------------------------------------------|----------|--------------|------------------|--------------------|-------------|-----------------------|------------------------|
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 179.36 | 10.2.0 |
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 244.75 | 10.2.0 |
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 320.79 | 10.2.0 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|---------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 11.88 ms | 2.62 | 97.38 |0 | v6.1.0 | OpenVX |
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.60 ms | 3.33 | 96.67 |0 | v6.1.0 | OpenVX |
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 13.93 ms | 5.12 | 94.88 |0 | v6.1.0 | OpenVX |
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 33.38 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 45.43 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 58.80 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 52.63 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 72.51 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 95.84 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
### AP on COCO Person dataset
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | AP |
|-------|--------|------------|----|
| st_yolo_lc_v1 | Int8 | 192x192x3 | 30.7 % |
| st_yolo_lc_v1 | Float | 192x192x3 | 31.2 % |
| st_yolo_lc_v1 | Int8 | 224x224x3 | 34.2 % |
| st_yolo_lc_v1 | Float | 224x224x3 | 33.8 % |
| st_yolo_lc_v1 | Int8 | 256x256x3 | 35.6 % |
| st_yolo_lc_v1 | Float | 256x256x3 | 36.4 % |
\* EVAL_IOU = 0.5, NMS_THRESH = 0.5, SCORE_THRESH = 0.001, MAX_DETECTIONS = 100
## Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
# References
<a id="1">[1]</a>
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{'{a} }r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}