cnn_xsum_samsum_model

This model is a fine-tuned version of lidiya/bart-large-xsum-samsum on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6585
  • Rouge1: 0.4194
  • Rouge2: 0.1959
  • Rougel: 0.2948
  • Rougelsum: 0.3902
  • Gen Len: 60.8916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.6501 1.0 836 1.6017 0.4143 0.194 0.2912 0.3845 60.7718
1.3162 2.0 1672 1.5954 0.4113 0.1908 0.2891 0.3819 61.3206
1.1452 3.0 2508 1.5853 0.4196 0.1964 0.2945 0.3899 60.928
1.012 4.0 3344 1.6293 0.4201 0.1967 0.2952 0.3911 60.7965
0.9368 5.0 4180 1.6585 0.4194 0.1959 0.2948 0.3902 60.8916

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
14
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SWAGATAM041/cnn_xsum_samsum_model

Finetuned
(2)
this model