File size: 2,023 Bytes
2017999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: lidiya/bart-large-xsum-samsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: cnn_xsum_samsum_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cnn_xsum_samsum_model

This model is a fine-tuned version of [lidiya/bart-large-xsum-samsum](https://huggingface.co/lidiya/bart-large-xsum-samsum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6585
- Rouge1: 0.4194
- Rouge2: 0.1959
- Rougel: 0.2948
- Rougelsum: 0.3902
- Gen Len: 60.8916

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.6501        | 1.0   | 836  | 1.6017          | 0.4143 | 0.194  | 0.2912 | 0.3845    | 60.7718 |
| 1.3162        | 2.0   | 1672 | 1.5954          | 0.4113 | 0.1908 | 0.2891 | 0.3819    | 61.3206 |
| 1.1452        | 3.0   | 2508 | 1.5853          | 0.4196 | 0.1964 | 0.2945 | 0.3899    | 60.928  |
| 1.012         | 4.0   | 3344 | 1.6293          | 0.4201 | 0.1967 | 0.2952 | 0.3911    | 60.7965 |
| 0.9368        | 5.0   | 4180 | 1.6585          | 0.4194 | 0.1959 | 0.2948 | 0.3902    | 60.8916 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2