YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Model Card for Bert2Bert-HunSum-1

The Bert2Bert-HunSum-1 is a Hungarian abstractive summarization model, which was trained on the SZTAKI-HLT/HunSum-1 dataset. The model is based on SZTAKI-HLT/hubert-base-cc.

Intended uses & limitations

  • Model type: Text Summarization
  • Language(s) (NLP): Hungarian
  • Resource(s) for more information:

Parameters

  • Batch Size: 13
  • Learning Rate: 5e-5
  • Weight Decay: 0.01
  • Warmup Steps: 16000
  • Epochs: 15
  • no_repeat_ngram_size: 3
  • num_beams: 5
  • early_stopping: True

Results

Metric Value
ROUGE-1 28.52
ROUGE-2 10.35
ROUGE-L 20.07

Citation

If you use our model, please cite the following paper:

@inproceedings {HunSum-1,
    title = {{HunSum-1: an Abstractive Summarization Dataset for Hungarian}},
    booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)},
    year = {2023},
    publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
    address = {Szeged, Magyarország},
    author = {Barta, Botond and Lakatos, Dorina and Nagy, Attila and Nyist, Mil{\'{a}}n Konor and {\'{A}}cs, Judit},
    pages = {231--243}
}
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train SZTAKI-HLT/Bert2Bert-HunSum-1