|
--- |
|
base_model: westlake-repl/SaProt_650M_AF2 |
|
library_name: peft |
|
--- |
|
# Base model: [westlake-repl/SaProt_650M_AF2](https://huggingface.co/westlake-repl/SaProt_650M_AF2) |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This model is used to predict signal peptides on each site of amino acid sequences. |
|
|
|
### Task type |
|
Residue level clssification |
|
|
|
### Dataset description |
|
The dataset is from [SignalP 6.0 predicts all five types of signal |
|
peptides using protein language models](https://www.nature.com/articles/s41587-021-01156-3). |
|
This dataset contains 7 classes: |
|
|
|
S (0): Sec/SPI signal peptide | T (1): Tat/SPI or Tat/SPII signal peptide | L (2): Sec/SPII signal peptide | |
|
P (3): Sec/SPIII signal peptide | I (4): cytoplasm | M (5): transmembrane | O (6): extracellular |
|
### Model input type |
|
Amino acid sequence |
|
|
|
### Performance |
|
test_acc: 0.96 |
|
|
|
### LoRA config |
|
lora_dropout: 0.0 |
|
|
|
lora_alpha: 16 |
|
|
|
target_modules: ["query", "key", "value", "intermediate.dense", "output.dense"] |
|
|
|
modules_to_save: ["classifier"] |
|
|
|
### Training config |
|
class: AdamW |
|
|
|
betas: (0.9, 0.98) |
|
|
|
weight_decay: 0.01 |
|
|
|
learning rate: 1e-4 |
|
|
|
epoch: 10 |
|
|
|
batch size: 100 |
|
|
|
precision: 16-mixed |