segformer-b0-finetuned-segments-sidewalk-oct-22

This model is a fine-tuned version of nvidia/mit-b0 on the Saad287/SIXRay_Gun dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0727
  • Mean Iou: 0.1716
  • Mean Accuracy: 0.2272
  • Overall Accuracy: 0.5822
  • Accuracy No-label: nan
  • Accuracy Object1: 0.6917
  • Accuracy Object2: 0.5239
  • Accuracy Object3: 0.0778
  • Accuracy Object4: 0.0696
  • Accuracy Object5: 0.0
  • Accuracy Object6: 0.0
  • Iou No-label: 0.0
  • Iou Object1: 0.5988
  • Iou Object2: 0.4586
  • Iou Object3: 0.0758
  • Iou Object4: 0.0684
  • Iou Object5: 0.0
  • Iou Object6: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy No-label Accuracy Object1 Accuracy Object2 Accuracy Object3 Accuracy Object4 Accuracy Object5 Accuracy Object6 Iou No-label Iou Object1 Iou Object2 Iou Object3 Iou Object4 Iou Object5 Iou Object6
0.1266 0.0521 20 0.1356 0.0943 0.1241 0.3893 nan 0.5262 0.2186 0.0 0.0 0.0 0.0 0.0 0.4513 0.2089 0.0 0.0 0.0 0.0
0.1092 0.1042 40 0.1287 0.1213 0.1733 0.4985 nan 0.6110 0.4286 0.0 0.0 0.0 0.0 0.0 0.5087 0.3405 0.0 0.0 0.0 0.0
0.2208 0.1562 60 0.1160 0.1007 0.1384 0.4361 nan 0.5925 0.2378 0.0 0.0 0.0 0.0 0.0 0.4796 0.2253 0.0 0.0 0.0 0.0
0.0722 0.2083 80 0.1101 0.1112 0.1556 0.4948 nan 0.6781 0.2555 0.0 0.0 0.0 0.0 0.0 0.5337 0.2444 0.0 0.0 0.0 0.0
0.1476 0.2604 100 0.1162 0.0784 0.1115 0.3905 nan 0.5849 0.0840 0.0 0.0 0.0 0.0 0.0 0.4653 0.0832 0.0 0.0 0.0 0.0
0.1069 0.3125 120 0.1134 0.0970 0.1300 0.3504 nan 0.3937 0.3863 0.0 0.0 0.0 0.0 0.0 0.3681 0.3108 0.0 0.0 0.0 0.0
0.1365 0.3646 140 0.1155 0.1276 0.1826 0.5713 nan 0.7701 0.3256 0.0 0.0 0.0 0.0 0.0 0.5870 0.3061 0.0 0.0 0.0 0.0
0.0918 0.4167 160 0.1053 0.1279 0.1801 0.5374 nan 0.6877 0.3932 0.0 0.0 0.0 0.0 0.0 0.5440 0.3513 0.0 0.0 0.0 0.0
0.109 0.4688 180 0.1014 0.1200 0.1647 0.5025 nan 0.6596 0.3285 0.0 0.0 0.0 0.0 0.0 0.5336 0.3065 0.0 0.0 0.0 0.0
0.0906 0.5208 200 0.0959 0.1338 0.1851 0.5505 nan 0.7024 0.4078 0.0002 0.0 0.0 0.0 0.0 0.5734 0.3628 0.0002 0.0 0.0 0.0
0.0735 0.5729 220 0.0988 0.1066 0.1552 0.5157 nan 0.7370 0.1944 0.0 0.0 0.0 0.0 0.0 0.5557 0.1906 0.0 0.0 0.0 0.0
0.0534 0.625 240 0.0944 0.1308 0.1779 0.5155 nan 0.6374 0.4301 0.0 0.0 0.0 0.0 0.0 0.5435 0.3721 0.0 0.0 0.0 0.0
0.0646 0.6771 260 0.0888 0.1316 0.1782 0.5113 nan 0.6243 0.4451 0.0 0.0 0.0 0.0 0.0 0.5378 0.3836 0.0 0.0 0.0 0.0
0.0918 0.7292 280 0.0915 0.1361 0.2036 0.5495 nan 0.6184 0.6031 0.0002 0.0 0.0 0.0 0.0 0.5300 0.4227 0.0002 0.0 0.0 0.0
0.0408 0.7812 300 0.0930 0.1228 0.1654 0.4673 nan 0.5597 0.4330 0.0 0.0 0.0 0.0 0.0 0.4926 0.3672 0.0 0.0 0.0 0.0
0.0592 0.8333 320 0.0902 0.1175 0.1864 0.4581 nan 0.4423 0.6763 0.0 0.0 0.0 0.0 0.0 0.4111 0.4118 0.0 0.0 0.0 0.0
0.1232 0.8854 340 0.0865 0.1332 0.1826 0.5524 nan 0.7218 0.3685 0.0006 0.0047 0.0 0.0 0.0 0.5813 0.3459 0.0006 0.0047 0.0 0.0
0.0886 0.9375 360 0.0832 0.1409 0.1895 0.5316 nan 0.6377 0.4882 0.0029 0.0081 0.0 0.0 0.0 0.5571 0.4187 0.0029 0.0080 0.0 0.0
0.1017 0.9896 380 0.0834 0.1538 0.2141 0.6076 nan 0.7507 0.5053 0.0002 0.0286 0.0 0.0 0.0 0.6136 0.4339 0.0002 0.0285 0.0 0.0
0.0752 1.0417 400 0.0796 0.1454 0.1951 0.5326 nan 0.6349 0.4953 0.0056 0.0348 0.0 0.0 0.0 0.5505 0.4279 0.0056 0.0339 0.0 0.0
0.1932 1.0938 420 0.0791 0.1678 0.2318 0.5991 nan 0.6897 0.6074 0.0223 0.0716 0.0 0.0 0.0 0.5951 0.4879 0.0222 0.0698 0.0 0.0
0.0981 1.1458 440 0.0821 0.1434 0.1909 0.5522 nan 0.7081 0.3933 0.0162 0.0276 0.0 0.0 0.0 0.5899 0.3721 0.0160 0.0258 0.0 0.0
0.0492 1.1979 460 0.0778 0.1562 0.2103 0.5857 nan 0.7383 0.4459 0.0083 0.0693 0.0 0.0 0.0 0.6071 0.4113 0.0083 0.0666 0.0 0.0
0.0509 1.25 480 0.0793 0.1534 0.2028 0.5267 nan 0.6092 0.5256 0.0293 0.0530 0.0 0.0 0.0 0.5463 0.4500 0.0289 0.0483 0.0 0.0
0.0687 1.3021 500 0.0784 0.1848 0.2528 0.6293 nan 0.7450 0.5812 0.0154 0.1753 0.0 0.0 0.0 0.6296 0.4799 0.0154 0.1688 0.0 0.0
0.0731 1.3542 520 0.0785 0.1379 0.1795 0.5113 nan 0.6292 0.4299 0.0118 0.0060 0.0 0.0 0.0 0.5519 0.3956 0.0118 0.0060 0.0 0.0
0.037 1.4062 540 0.0767 0.1712 0.2348 0.6052 nan 0.6978 0.6093 0.0298 0.0718 0.0 0.0 0.0 0.6092 0.4886 0.0297 0.0709 0.0 0.0
0.0656 1.4583 560 0.0765 0.1693 0.2280 0.5944 nan 0.6972 0.5661 0.0505 0.0546 0.0 0.0 0.0 0.6022 0.4787 0.0502 0.0543 0.0 0.0
0.1244 1.5104 580 0.0750 0.1580 0.2096 0.5554 nan 0.6455 0.5464 0.0458 0.0200 0.0 0.0 0.0 0.5717 0.4693 0.0451 0.0198 0.0 0.0
0.0528 1.5625 600 0.0748 0.1827 0.2448 0.6157 nan 0.7343 0.5472 0.0655 0.1219 0.0 0.0 0.0 0.6238 0.4736 0.0642 0.1169 0.0 0.0
0.0818 1.6146 620 0.0733 0.1749 0.2370 0.5908 nan 0.6649 0.6280 0.0422 0.0868 0.0 0.0 0.0 0.5926 0.5054 0.0419 0.0846 0.0 0.0
0.0272 1.6667 640 0.0728 0.1772 0.2375 0.6001 nan 0.7048 0.5615 0.0640 0.0946 0.0 0.0 0.0 0.6094 0.4767 0.0630 0.0913 0.0 0.0
0.0358 1.7188 660 0.0734 0.1704 0.2254 0.5721 nan 0.6660 0.5484 0.0747 0.0634 0.0 0.0 0.0 0.5852 0.4709 0.0736 0.0628 0.0 0.0
0.0808 1.7708 680 0.0723 0.1761 0.2321 0.5862 nan 0.7035 0.5020 0.1054 0.0815 0.0 0.0 0.0 0.6020 0.4478 0.1022 0.0805 0.0 0.0
0.0663 1.8229 700 0.0721 0.1784 0.2361 0.5952 nan 0.7086 0.5257 0.0974 0.0852 0.0 0.0 0.0 0.6091 0.4612 0.0946 0.0839 0.0 0.0
0.0521 1.875 720 0.0720 0.1798 0.2392 0.5963 nan 0.6937 0.5680 0.0861 0.0877 0.0 0.0 0.0 0.6054 0.4824 0.0845 0.0864 0.0 0.0
0.0557 1.9271 740 0.0725 0.1758 0.2341 0.5959 nan 0.7035 0.5469 0.0758 0.0784 0.0 0.0 0.0 0.6081 0.4711 0.0744 0.0772 0.0 0.0
0.048 1.9792 760 0.0727 0.1716 0.2272 0.5822 nan 0.6917 0.5239 0.0778 0.0696 0.0 0.0 0.0 0.5988 0.4586 0.0758 0.0684 0.0 0.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Saad287/segformer-b0-finetuned-segments-sidewalk-oct-22

Base model

nvidia/mit-b0
Finetuned
(347)
this model