segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of nvidia/mit-b0 on the Saad287/SIXRay_Gun dataset. It achieves the following results on the evaluation set:
- Loss: 0.0727
- Mean Iou: 0.1716
- Mean Accuracy: 0.2272
- Overall Accuracy: 0.5822
- Accuracy No-label: nan
- Accuracy Object1: 0.6917
- Accuracy Object2: 0.5239
- Accuracy Object3: 0.0778
- Accuracy Object4: 0.0696
- Accuracy Object5: 0.0
- Accuracy Object6: 0.0
- Iou No-label: 0.0
- Iou Object1: 0.5988
- Iou Object2: 0.4586
- Iou Object3: 0.0758
- Iou Object4: 0.0684
- Iou Object5: 0.0
- Iou Object6: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy No-label | Accuracy Object1 | Accuracy Object2 | Accuracy Object3 | Accuracy Object4 | Accuracy Object5 | Accuracy Object6 | Iou No-label | Iou Object1 | Iou Object2 | Iou Object3 | Iou Object4 | Iou Object5 | Iou Object6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1266 | 0.0521 | 20 | 0.1356 | 0.0943 | 0.1241 | 0.3893 | nan | 0.5262 | 0.2186 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4513 | 0.2089 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1092 | 0.1042 | 40 | 0.1287 | 0.1213 | 0.1733 | 0.4985 | nan | 0.6110 | 0.4286 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5087 | 0.3405 | 0.0 | 0.0 | 0.0 | 0.0 |
0.2208 | 0.1562 | 60 | 0.1160 | 0.1007 | 0.1384 | 0.4361 | nan | 0.5925 | 0.2378 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4796 | 0.2253 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0722 | 0.2083 | 80 | 0.1101 | 0.1112 | 0.1556 | 0.4948 | nan | 0.6781 | 0.2555 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5337 | 0.2444 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1476 | 0.2604 | 100 | 0.1162 | 0.0784 | 0.1115 | 0.3905 | nan | 0.5849 | 0.0840 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4653 | 0.0832 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1069 | 0.3125 | 120 | 0.1134 | 0.0970 | 0.1300 | 0.3504 | nan | 0.3937 | 0.3863 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3681 | 0.3108 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1365 | 0.3646 | 140 | 0.1155 | 0.1276 | 0.1826 | 0.5713 | nan | 0.7701 | 0.3256 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5870 | 0.3061 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0918 | 0.4167 | 160 | 0.1053 | 0.1279 | 0.1801 | 0.5374 | nan | 0.6877 | 0.3932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5440 | 0.3513 | 0.0 | 0.0 | 0.0 | 0.0 |
0.109 | 0.4688 | 180 | 0.1014 | 0.1200 | 0.1647 | 0.5025 | nan | 0.6596 | 0.3285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5336 | 0.3065 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0906 | 0.5208 | 200 | 0.0959 | 0.1338 | 0.1851 | 0.5505 | nan | 0.7024 | 0.4078 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5734 | 0.3628 | 0.0002 | 0.0 | 0.0 | 0.0 |
0.0735 | 0.5729 | 220 | 0.0988 | 0.1066 | 0.1552 | 0.5157 | nan | 0.7370 | 0.1944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5557 | 0.1906 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0534 | 0.625 | 240 | 0.0944 | 0.1308 | 0.1779 | 0.5155 | nan | 0.6374 | 0.4301 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5435 | 0.3721 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0646 | 0.6771 | 260 | 0.0888 | 0.1316 | 0.1782 | 0.5113 | nan | 0.6243 | 0.4451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5378 | 0.3836 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0918 | 0.7292 | 280 | 0.0915 | 0.1361 | 0.2036 | 0.5495 | nan | 0.6184 | 0.6031 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5300 | 0.4227 | 0.0002 | 0.0 | 0.0 | 0.0 |
0.0408 | 0.7812 | 300 | 0.0930 | 0.1228 | 0.1654 | 0.4673 | nan | 0.5597 | 0.4330 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4926 | 0.3672 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0592 | 0.8333 | 320 | 0.0902 | 0.1175 | 0.1864 | 0.4581 | nan | 0.4423 | 0.6763 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4111 | 0.4118 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1232 | 0.8854 | 340 | 0.0865 | 0.1332 | 0.1826 | 0.5524 | nan | 0.7218 | 0.3685 | 0.0006 | 0.0047 | 0.0 | 0.0 | 0.0 | 0.5813 | 0.3459 | 0.0006 | 0.0047 | 0.0 | 0.0 |
0.0886 | 0.9375 | 360 | 0.0832 | 0.1409 | 0.1895 | 0.5316 | nan | 0.6377 | 0.4882 | 0.0029 | 0.0081 | 0.0 | 0.0 | 0.0 | 0.5571 | 0.4187 | 0.0029 | 0.0080 | 0.0 | 0.0 |
0.1017 | 0.9896 | 380 | 0.0834 | 0.1538 | 0.2141 | 0.6076 | nan | 0.7507 | 0.5053 | 0.0002 | 0.0286 | 0.0 | 0.0 | 0.0 | 0.6136 | 0.4339 | 0.0002 | 0.0285 | 0.0 | 0.0 |
0.0752 | 1.0417 | 400 | 0.0796 | 0.1454 | 0.1951 | 0.5326 | nan | 0.6349 | 0.4953 | 0.0056 | 0.0348 | 0.0 | 0.0 | 0.0 | 0.5505 | 0.4279 | 0.0056 | 0.0339 | 0.0 | 0.0 |
0.1932 | 1.0938 | 420 | 0.0791 | 0.1678 | 0.2318 | 0.5991 | nan | 0.6897 | 0.6074 | 0.0223 | 0.0716 | 0.0 | 0.0 | 0.0 | 0.5951 | 0.4879 | 0.0222 | 0.0698 | 0.0 | 0.0 |
0.0981 | 1.1458 | 440 | 0.0821 | 0.1434 | 0.1909 | 0.5522 | nan | 0.7081 | 0.3933 | 0.0162 | 0.0276 | 0.0 | 0.0 | 0.0 | 0.5899 | 0.3721 | 0.0160 | 0.0258 | 0.0 | 0.0 |
0.0492 | 1.1979 | 460 | 0.0778 | 0.1562 | 0.2103 | 0.5857 | nan | 0.7383 | 0.4459 | 0.0083 | 0.0693 | 0.0 | 0.0 | 0.0 | 0.6071 | 0.4113 | 0.0083 | 0.0666 | 0.0 | 0.0 |
0.0509 | 1.25 | 480 | 0.0793 | 0.1534 | 0.2028 | 0.5267 | nan | 0.6092 | 0.5256 | 0.0293 | 0.0530 | 0.0 | 0.0 | 0.0 | 0.5463 | 0.4500 | 0.0289 | 0.0483 | 0.0 | 0.0 |
0.0687 | 1.3021 | 500 | 0.0784 | 0.1848 | 0.2528 | 0.6293 | nan | 0.7450 | 0.5812 | 0.0154 | 0.1753 | 0.0 | 0.0 | 0.0 | 0.6296 | 0.4799 | 0.0154 | 0.1688 | 0.0 | 0.0 |
0.0731 | 1.3542 | 520 | 0.0785 | 0.1379 | 0.1795 | 0.5113 | nan | 0.6292 | 0.4299 | 0.0118 | 0.0060 | 0.0 | 0.0 | 0.0 | 0.5519 | 0.3956 | 0.0118 | 0.0060 | 0.0 | 0.0 |
0.037 | 1.4062 | 540 | 0.0767 | 0.1712 | 0.2348 | 0.6052 | nan | 0.6978 | 0.6093 | 0.0298 | 0.0718 | 0.0 | 0.0 | 0.0 | 0.6092 | 0.4886 | 0.0297 | 0.0709 | 0.0 | 0.0 |
0.0656 | 1.4583 | 560 | 0.0765 | 0.1693 | 0.2280 | 0.5944 | nan | 0.6972 | 0.5661 | 0.0505 | 0.0546 | 0.0 | 0.0 | 0.0 | 0.6022 | 0.4787 | 0.0502 | 0.0543 | 0.0 | 0.0 |
0.1244 | 1.5104 | 580 | 0.0750 | 0.1580 | 0.2096 | 0.5554 | nan | 0.6455 | 0.5464 | 0.0458 | 0.0200 | 0.0 | 0.0 | 0.0 | 0.5717 | 0.4693 | 0.0451 | 0.0198 | 0.0 | 0.0 |
0.0528 | 1.5625 | 600 | 0.0748 | 0.1827 | 0.2448 | 0.6157 | nan | 0.7343 | 0.5472 | 0.0655 | 0.1219 | 0.0 | 0.0 | 0.0 | 0.6238 | 0.4736 | 0.0642 | 0.1169 | 0.0 | 0.0 |
0.0818 | 1.6146 | 620 | 0.0733 | 0.1749 | 0.2370 | 0.5908 | nan | 0.6649 | 0.6280 | 0.0422 | 0.0868 | 0.0 | 0.0 | 0.0 | 0.5926 | 0.5054 | 0.0419 | 0.0846 | 0.0 | 0.0 |
0.0272 | 1.6667 | 640 | 0.0728 | 0.1772 | 0.2375 | 0.6001 | nan | 0.7048 | 0.5615 | 0.0640 | 0.0946 | 0.0 | 0.0 | 0.0 | 0.6094 | 0.4767 | 0.0630 | 0.0913 | 0.0 | 0.0 |
0.0358 | 1.7188 | 660 | 0.0734 | 0.1704 | 0.2254 | 0.5721 | nan | 0.6660 | 0.5484 | 0.0747 | 0.0634 | 0.0 | 0.0 | 0.0 | 0.5852 | 0.4709 | 0.0736 | 0.0628 | 0.0 | 0.0 |
0.0808 | 1.7708 | 680 | 0.0723 | 0.1761 | 0.2321 | 0.5862 | nan | 0.7035 | 0.5020 | 0.1054 | 0.0815 | 0.0 | 0.0 | 0.0 | 0.6020 | 0.4478 | 0.1022 | 0.0805 | 0.0 | 0.0 |
0.0663 | 1.8229 | 700 | 0.0721 | 0.1784 | 0.2361 | 0.5952 | nan | 0.7086 | 0.5257 | 0.0974 | 0.0852 | 0.0 | 0.0 | 0.0 | 0.6091 | 0.4612 | 0.0946 | 0.0839 | 0.0 | 0.0 |
0.0521 | 1.875 | 720 | 0.0720 | 0.1798 | 0.2392 | 0.5963 | nan | 0.6937 | 0.5680 | 0.0861 | 0.0877 | 0.0 | 0.0 | 0.0 | 0.6054 | 0.4824 | 0.0845 | 0.0864 | 0.0 | 0.0 |
0.0557 | 1.9271 | 740 | 0.0725 | 0.1758 | 0.2341 | 0.5959 | nan | 0.7035 | 0.5469 | 0.0758 | 0.0784 | 0.0 | 0.0 | 0.0 | 0.6081 | 0.4711 | 0.0744 | 0.0772 | 0.0 | 0.0 |
0.048 | 1.9792 | 760 | 0.0727 | 0.1716 | 0.2272 | 0.5822 | nan | 0.6917 | 0.5239 | 0.0778 | 0.0696 | 0.0 | 0.0 | 0.0 | 0.5988 | 0.4586 | 0.0758 | 0.0684 | 0.0 | 0.0 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Saad287/segformer-b0-finetuned-segments-sidewalk-oct-22
Base model
nvidia/mit-b0