File size: 3,165 Bytes
e138556 252d05a e138556 252d05a e138556 7cb7330 e138556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
license: apache-2.0
pipeline_tag: text-generation
---
# π₯· Safurai-Csharp-34B
π [Article](https://www.safurai.com/blog/introducing-safurai-csharp)
π [Paper](https://www.safurai.com/)
<center><img src="https://i.imgur.com/REPqbYM.png" width="300"></center>
This is a [`codellama/CodeLlama-34b-hf`](https://huggingface.co/codellama/CodeLlama-34b-hf) model fine-tuned using QLoRA (4-bit precision) on 13B tokens of csharp evolved Q&A
We obtained <b>state-of-the-art performance</b> on the MultiPL-E code LLM benchmark for csharp, reaching 56% at pass@1 with n=5.
## π» Quantization
These are GGUF quantized versions of Safurai-Csharp-34B, it has been made by using the amazing [`llama.cpp`](https://github.com/ggerganov/llama.cpp) library.
## π§ Training
It was trained on 2 x NVIDIA A100 PCIe 80GB in 7h 40m with the following configuration file:
```yaml
base_model: codellama/CodeLlama-34b-hf
base_model_config: codellama/CodeLlama-34b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true
hub_model_id: "Safurai/Evol-csharp-v1"
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Safurai/EvolInstruct-csharp-16k-13B-Alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: codellama-csharp
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0003
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
eval_steps: 40
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
## π Training loss curve:
<img src="https://i.imgur.com/rp1htuf.png" width="500">
## π Dataset composition:
<img src="https://i.imgur.com/kTNXgGX.png" width="500">
## π» Usage for GGUF
``` python
# disclaimer: you have to use the llama.gguf library to run this code
import os
model_list = [file for file in os.listdir(MODEL_NAME) if GGML_VERSION in file]
prompt = input("Enter your prompt: ")
chosen_method = input("Please specify the quantization method to run the model (options: " + ", ".join(model_list) + "): ")
# Verify the chosen method is in the list
if chosen_method not in model_list:
print("Invalid method chosen!")
else:
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{GGML_VERSION}.{method}.bin"
!./llama.cpp/main -m {qtype} -n 128 --color -ngl 35 -p "{prompt}"
```
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |